Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 41, Issue 3, Pages 403–407
DOI: https://doi.org/10.1070/SM1982v041n03ABEH002239
(Mi sm2814)
 

This article is cited in 12 scientific papers (total in 12 papers)

On a new type of bifurcations on manifolds

V. S. Medvedev
References:
Abstract: Palis and Pugh asked if there exists a one-parameter family of smooth vector fields on a compact manifold, having a closed orbit which depends continuously on the parameter but whose period is not bounded above (as a function of the parameter) and which disappears at a finite (positive) distance from the set of singular points of the vector field.
In this paper we answer this question affirmatively. Moreover, we formulate a condition for the existence of the corresponding bifurcation of a smooth vector field without singularities on a closed two-dimensional manifold, and we give concrete examples.
Bibliography: 4 titles.
Received: 11.02.1980
Bibliographic databases:
UDC: 513.83+517.9
MSC: Primary 58F14, 34C40; Secondary 58F22
Language: English
Original paper language: Russian
Citation: V. S. Medvedev, “On a new type of bifurcations on manifolds”, Math. USSR-Sb., 41:3 (1982), 403–407
Citation in format AMSBIB
\Bibitem{Med80}
\by V.~S.~Medvedev
\paper On a~new type of bifurcations on manifolds
\jour Math. USSR-Sb.
\yr 1982
\vol 41
\issue 3
\pages 403--407
\mathnet{http://mi.mathnet.ru/eng/sm2814}
\crossref{https://doi.org/10.1070/SM1982v041n03ABEH002239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=601891}
\zmath{https://zbmath.org/?q=an:0484.58025|0468.58014}
Linking options:
  • https://www.mathnet.ru/eng/sm2814
  • https://doi.org/10.1070/SM1982v041n03ABEH002239
  • https://www.mathnet.ru/eng/sm/v155/i3/p487
  • This publication is cited in the following 12 articles:
    1. L.P.avlovich Shilnikov, A.L.. Shilnikov, D.V.. Turaev, “Showcase of Blue Sky Catastrophes”, Int. J. Bifurcation Chaos, 24:08 (2014), 1440003  crossref  mathscinet
    2. Viacheslav Grines, Evgeny Zhuzhoma, Springer Proceedings in Mathematics, 1, Dynamics, Games and Science I, 2011, 421  crossref
    3. Ale Jan Homburg, Björn Sandstede, Handbook of Dynamical Systems, 3, 2010, 379  crossref
    4. A. R. Borisyuk, “Global bifurcations on a Klein bottle. The general case”, Sb. Math., 196:4 (2005), 465–483  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Shilnikov, A, “On some mathematical topics in classical synchronization. A tutorial”, International Journal of Bifurcation and Chaos, 14:7 (2004), 2143  crossref  mathscinet  zmath  isi  elib
    6. Aranson S. Zhuzhoma E. Medvedev V., “Continuity and Collapse of the Geodesic Framework of Flows on Surfaces”, Dokl. Akad. Nauk, 362:1 (1998), 7–11  mathnet  mathscinet  zmath  isi
    7. S. Kh. Aranson, E. V. Zhuzhoma, V. S. Medvedev, “On continuity of geodesic frameworks of flows on surfaces”, Sb. Math., 188:7 (1997), 955–972  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. S. Kh. Aranson, E. V. Zhuzhoma, V. S. Medvedev, “Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus”, Math. Notes, 61:3 (1997), 265–271  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Shilnikov L., Turaev D., “Simple Bifurcations Leading to Hyperbolic Attractors”, Comput. Math. Appl., 34:2-4 (1997), 173–193  crossref  mathscinet  zmath  isi
    10. D. V. Anosov, “On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II”, Math. USSR-Izv., 32:3 (1989), 449–474  mathnet  crossref  mathscinet  zmath
    11. S. Kh. Aranson, V. Z. Grines, “Topological classification of flows on closed two-dimensional manifolds”, Russian Math. Surveys, 41:1 (1986), 183–208  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    12. D. V. Anosov, “On generic properties of closed geodesics”, Math. USSR-Izv., 21:1 (1983), 1–29  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:141
    English version PDF:27
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025