Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 41, Issue 3, Pages 289–328
DOI: https://doi.org/10.1070/SM1982v041n03ABEH002235
(Mi sm2798)
 

This article is cited in 22 scientific papers (total in 22 papers)

A generalization of the Wiener–Hopf method for convolution equations on a finite interval with symbols having power-like asymptotics at infinity

B. V. Pal'tsev
References:
Abstract: A generalization of the Wiener–Hopf method is obtained for convolution equations on the finite interval $(-T,T)$
$$ (\mathbf Ku)(t)=f(t),\qquad|t|<T, $$
where $\mathbf K$ is the convolution operator $\mathbf Ku(t)=(r_{(-T,T)}k*u)(t)$, $u(t)\in\mathscr S'(\mathbf R^1)$, $u(t)\equiv0$ for $|t|>T$, $*$ is the convolution operation, $k=k(t)$ is a kernel belonging to $\mathscr S'(\mathbf R^1)$, $r_{(-T,T)}$ is the operator of restriction of a generalized function to the interval $(-T,T)$, and $f(t)\in\mathscr D'(-T,T)$. Here $\mathscr S(\mathbf R^1)$ and $\mathscr S'(\mathbf R^1)$ are the Schwartz spaces of rapidly decreasing test functions and generalized functions of slow growth on $\mathbf R^1$, respectively.
Bibliogrpahy: 19 titles.
Received: 19.05.1980
Bibliographic databases:
UDC: 517.948
MSC: Primary 30E25, 45E10; Secondary 46F12, 47A53
Language: English
Original paper language: Russian
Citation: B. V. Pal'tsev, “A generalization of the Wiener–Hopf method for convolution equations on a finite interval with symbols having power-like asymptotics at infinity”, Math. USSR-Sb., 41:3 (1982), 289–328
Citation in format AMSBIB
\Bibitem{Pal80}
\by B.~V.~Pal'tsev
\paper A~generalization of the Wiener--Hopf method for convolution equations on a~finite interval with symbols having power-like asymptotics at infinity
\jour Math. USSR-Sb.
\yr 1982
\vol 41
\issue 3
\pages 289--328
\mathnet{http://mi.mathnet.ru//eng/sm2798}
\crossref{https://doi.org/10.1070/SM1982v041n03ABEH002235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=601887}
\zmath{https://zbmath.org/?q=an:0477.45002|0464.45002}
Linking options:
  • https://www.mathnet.ru/eng/sm2798
  • https://doi.org/10.1070/SM1982v041n03ABEH002235
  • https://www.mathnet.ru/eng/sm/v155/i3/p355
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:739
    Russian version PDF:189
    English version PDF:11
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024