Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 41, Issue 2, Pages 181–201
DOI: https://doi.org/10.1070/SM1982v041n02ABEH002228
(Mi sm2789)
 

On local finiteness in varieties of associative algebras

G. P. Chekanu
References:
Abstract: A variety $\mathfrak M$ of algebras is called distinguished if there is a countably generated, locally finite algebra $R\in\mathfrak M$ such that any other countably generated locally finite algebra $A\in\mathfrak M$ is a homomorphic image of $R$. This article continues the investigation of the question of when a variety of associative algebras is distinguished.
For example, if the ground field $\Phi$ is uncountable, then every distinguished variety is nonmatric. Note that nonmatric varieties over an algebraically closed field are always distinguished and, over a field $\Phi$ of characteristic zero, a nonmatric variety is distinguished if and only if $\dim_\Phi\widehat\Phi\leqslant\aleph_0$, where $\widehat\Phi$ is the algebraic closure of $\Phi$.
Bibliography: 16 titles.
Received: 17.09.1979
Bibliographic databases:
UDC: 519.48
MSC: 16A48
Language: English
Original paper language: Russian
Citation: G. P. Chekanu, “On local finiteness in varieties of associative algebras”, Math. USSR-Sb., 41:2 (1982), 181–201
Citation in format AMSBIB
\Bibitem{Che80}
\by G.~P.~Chekanu
\paper On local finiteness in varieties of associative algebras
\jour Math. USSR-Sb.
\yr 1982
\vol 41
\issue 2
\pages 181--201
\mathnet{http://mi.mathnet.ru//eng/sm2789}
\crossref{https://doi.org/10.1070/SM1982v041n02ABEH002228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=594836}
\zmath{https://zbmath.org/?q=an:0468.16016}
Linking options:
  • https://www.mathnet.ru/eng/sm2789
  • https://doi.org/10.1070/SM1982v041n02ABEH002228
  • https://www.mathnet.ru/eng/sm/v155/i2/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024