Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 32, Issue 1, Pages 19–31
DOI: https://doi.org/10.1070/SM1977v032n01ABEH002313
(Mi sm2709)
 

This article is cited in 13 scientific papers (total in 13 papers)

On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$ metrics, $0<p\leqslant\infty$

N. S. Vyacheslavov
References:
Abstract: In this paper estimates of weak equivalence type, as $n\to\infty$ are given for the least deviations $L_pR_n(f,[-1,1])$ of the functions $f(x)=x^s\operatorname{sign}x$ ($s=0,1,\dots$) in the metric of $L_p[-1,1]$ ($1\leqslant p\leqslant\infty$) from the rational functions of degree $\leqslant n$ ($n=1,2,\dots$). Specifically it is shown that
$$ L_pR_n(x^s\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(s+\frac1p\biggr)n}\Biggr\} $$
($s\ne0$ при $p=\infty$); in particular,
\begin{gather*} L_pR_n(\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\frac np}\Biggr\}\qquad(1\leqslant p<\infty), \\ L_pR_n(|x|,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(1+\frac1p\biggr)n}\Biggr\}\qquad(1\leqslant p\leqslant\infty). \end{gather*}

Bibliography: 9 titles.
Received: 22.10.1976
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1977, Volume 103(145), Number 1(5), Pages 24–36
Bibliographic databases:
UDC: 517.51
MSC: 41A20
Language: English
Original paper language: Russian
Citation: N. S. Vyacheslavov, “On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$ metrics, $0<p\leqslant\infty$”, Mat. Sb. (N.S.), 103(145):1(5) (1977), 24–36; Math. USSR-Sb., 32:1 (1977), 19–31
Citation in format AMSBIB
\Bibitem{Vya77}
\by N.~S.~Vyacheslavov
\paper On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0<p\leqslant\infty$
\jour Mat. Sb. (N.S.)
\yr 1977
\vol 103(145)
\issue 1(5)
\pages 24--36
\mathnet{http://mi.mathnet.ru/sm2709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=445174}
\zmath{https://zbmath.org/?q=an:0355.41018|0392.41005}
\transl
\jour Math. USSR-Sb.
\yr 1977
\vol 32
\issue 1
\pages 19--31
\crossref{https://doi.org/10.1070/SM1977v032n01ABEH002313}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GE09700002}
Linking options:
  • https://www.mathnet.ru/eng/sm2709
  • https://doi.org/10.1070/SM1977v032n01ABEH002313
  • https://www.mathnet.ru/eng/sm/v145/i1/p24
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:400
    Russian version PDF:101
    English version PDF:14
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024