|
This article is cited in 13 scientific papers (total in 13 papers)
On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$ metrics, $0<p\leqslant\infty$
N. S. Vyacheslavov
Abstract:
In this paper estimates of weak equivalence type, as $n\to\infty$ are given for the least deviations $L_pR_n(f,[-1,1])$ of the functions $f(x)=x^s\operatorname{sign}x$ ($s=0,1,\dots$) in the metric of $L_p[-1,1]$ ($1\leqslant p\leqslant\infty$) from the rational functions of degree $\leqslant n$ ($n=1,2,\dots$). Specifically it is shown that
$$
L_pR_n(x^s\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(s+\frac1p\biggr)n}\Biggr\}
$$
($s\ne0$ при $p=\infty$); in particular,
\begin{gather*}
L_pR_n(\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\frac np}\Biggr\}\qquad(1\leqslant p<\infty),
\\
L_pR_n(|x|,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(1+\frac1p\biggr)n}\Biggr\}\qquad(1\leqslant p\leqslant\infty).
\end{gather*}
Bibliography: 9 titles.
Received: 22.10.1976
Citation:
N. S. Vyacheslavov, “On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$ metrics, $0<p\leqslant\infty$”, Mat. Sb. (N.S.), 103(145):1(5) (1977), 24–36; Math. USSR-Sb., 32:1 (1977), 19–31
Linking options:
https://www.mathnet.ru/eng/sm2709https://doi.org/10.1070/SM1977v032n01ABEH002313 https://www.mathnet.ru/eng/sm/v145/i1/p24
|
Statistics & downloads: |
Abstract page: | 400 | Russian version PDF: | 101 | English version PDF: | 14 | References: | 67 |
|