Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 2, Pages 249–256
DOI: https://doi.org/10.1070/SM1977v031n02ABEH002301
(Mi sm2683)
 

Commutative rings with subinjective ideals

L. A. Skornyakov
References:
Abstract: An ideal in a commutative ring is called subinjective if it is the homomorphic image of an injective module. It is proved that all ideals in a commutative ring are subinjective if and only if the ring is a direct sum of local rings with this property. Necessary and sufficient conditions are given for all ideals to be subinjective in the local case. In particular, this is the case for self-injective rings whose ideals are linearly ordered, and for local self-injective rings in which the maximal ideal has a nontrivial annihilator.
Bibliography: 7 titles.
Received: 20.05.1976
Bibliographic databases:
UDC: 519.48
MSC: 13C10
Language: English
Original paper language: Russian
Citation: L. A. Skornyakov, “Commutative rings with subinjective ideals”, Math. USSR-Sb., 31:2 (1977), 249–256
Citation in format AMSBIB
\Bibitem{Sko77}
\by L.~A.~Skornyakov
\paper Commutative rings with subinjective ideals
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 2
\pages 249--256
\mathnet{http://mi.mathnet.ru//eng/sm2683}
\crossref{https://doi.org/10.1070/SM1977v031n02ABEH002301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=472791}
\zmath{https://zbmath.org/?q=an:0341.13002|0388.13004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FY72200008}
Linking options:
  • https://www.mathnet.ru/eng/sm2683
  • https://doi.org/10.1070/SM1977v031n02ABEH002301
  • https://www.mathnet.ru/eng/sm/v144/i2/p280
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024