Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 62, Issue 1, Pages 223–242
DOI: https://doi.org/10.1070/SM1989v062n01ABEH003237
(Mi sm2668)
 

This article is cited in 3 scientific papers (total in 3 papers)

The averaging method for weakly nonlinear operator equations

A. L. Štaras
References:
Abstract: A method asymptotic with respect to a small parameter $\varepsilon$ is presented for solving Cauchy problems for the evolution equations
$$ u_t+Lu=\varepsilon f[u],\qquad u(0)=u_0, $$
where $L$ is a linear operator and $f$ is a nonlinear operator. It is assumed that the method of regular expansion in powers of $\varepsilon$ leads to secular terms. Such terms can be removed by suitably defining how the terms of the asymptotic solution depend on the slow variable $\tau=\varepsilon t$.
The proposed method is modified for equations of second order in $t$. The possibility of getting rid of the terms secular with respect to $\tau$, and of applying the asymptotic methods in the case of problems with strong forced resonance, is indicated. Examples are given which illustrate possibilities for the proposed methods.
Bibliography: 16 titles.
Received: 31.10.1986
Bibliographic databases:
UDC: 517.947
MSC: Primary 34E05, 35C20, 34G10; Secondary 34E15, 70K30, 34A10
Language: English
Original paper language: Russian
Citation: A. L. Štaras, “The averaging method for weakly nonlinear operator equations”, Math. USSR-Sb., 62:1 (1989), 223–242
Citation in format AMSBIB
\Bibitem{Sta87}
\by A.~L.~{\v S}taras
\paper The averaging method for weakly nonlinear operator equations
\jour Math. USSR-Sb.
\yr 1989
\vol 62
\issue 1
\pages 223--242
\mathnet{http://mi.mathnet.ru//eng/sm2668}
\crossref{https://doi.org/10.1070/SM1989v062n01ABEH003237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=922417}
\zmath{https://zbmath.org/?q=an:0672.35029}
Linking options:
  • https://www.mathnet.ru/eng/sm2668
  • https://doi.org/10.1070/SM1989v062n01ABEH003237
  • https://www.mathnet.ru/eng/sm/v176/i2/p223
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024