Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 7, Pages 1011–1023
DOI: https://doi.org/10.1070/SM2007v198n07ABEH003871
(Mi sm2662)
 

This article is cited in 30 scientific papers (total in 30 papers)

Padé approximants of the Mittag-Leffler functions

A. P. Starovoitov, N. A. Starovoitova

Francisk Skorina Gomel State University
References:
Abstract: It is shown that for mn the Padé approximants {πn,m(;Fγ)}, which locally deliver the best rational approximations to the Mittag-Leffler functions Fγ, approximate the Fγ as n uniformly on the compact set D={z:|z|1} at a rate asymptotically equal to the best possible one. In particular, analogues of the well-known results of Braess and Trefethen relating to the approximation of expz are proved for the Mittag-Leffler functions.
Bibliography: 28 titles.
Received: 08.08.2006 and 11.04.2007
Bibliographic databases:
UDC: 517.51+517.53
MSC: 41A21, 33C05
Language: English
Original paper language: Russian
Citation: A. P. Starovoitov, N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions”, Sb. Math., 198:7 (2007), 1011–1023
Citation in format AMSBIB
\Bibitem{StaSta07}
\by A.~P.~Starovoitov, N.~A.~Starovoitova
\paper Pad\'e approximants of the Mittag-Leffler functions
\jour Sb. Math.
\yr 2007
\vol 198
\issue 7
\pages 1011--1023
\mathnet{http://mi.mathnet.ru/eng/sm2662}
\crossref{https://doi.org/10.1070/SM2007v198n07ABEH003871}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354536}
\zmath{https://zbmath.org/?q=an:1135.41005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250726000006}
\elib{https://elibrary.ru/item.asp?id=9541674}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049040387}
Linking options:
  • https://www.mathnet.ru/eng/sm2662
  • https://doi.org/10.1070/SM2007v198n07ABEH003871
  • https://www.mathnet.ru/eng/sm/v198/i7/p109
  • This publication is cited in the following 30 articles:
    1. Y. O. Afolabi, T. A. Biala, Ibrahim O. Sarumi, B. A. Wade, “Global-Padé Approximation of the Three-Parameter Mittag-Leffler Function: Generalized Derivation and Numerical Implementation Issues”, Commun. Appl. Math. Comput., 2025  crossref
    2. Aljowhara H. Honain, Khaled M. Furati, Ibrahim O. Sarumi, Abdul Q. M. Khaliq, “Rational Approximations for the Oscillatory Two-Parameter Mittag–Leffler Function”, Fractal Fract, 8:6 (2024), 319  crossref
    3. Aljowhara H. Honain, Khaled M. Furati, 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), 2023, 1  crossref
    4. Tobias Danczul, Clemens Hofreither, Joachim Schöberl, “A unified rational Krylov method for elliptic and parabolic fractional diffusion problems”, Numerical Linear Algebra App, 30:5 (2023)  crossref
    5. N. V. Ryabchenko, A. P. Starovoitov, “Ratsionalnaya approksimatsiya funktsii Mittag–Lefflera”, PFMT, 2021, no. 1(46), 65–68  mathnet
    6. N. V. Ryabchenko, “Trigonometricheskie approksimatsii Pade spetsialnykh funktsii”, PFMT, 2021, no. 2(47), 81–83  mathnet
    7. Hernandez-Balaguera E., “Numerical Approximations on the Transient Analysis of Bioelectric Phenomena At Long Time Scales Via the Mittag-Leffler Function”, Chaos Solitons Fractals, 145 (2021), 110768  crossref  mathscinet  isi
    8. Sarumi I.O., Furati Kh.M., Khaliq A.Q.M., “Highly Accurate Global Pade Approximations of Generalized Mittag-Leffler Function and Its Inverse”, J. Sci. Comput., 82:2 (2020), UNSP 46  crossref  mathscinet  isi
    9. Jeng S.W., Kilicman A., “Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods”, Symmetry-Basel, 12:6 (2020), 959  crossref  isi
    10. Jeng S.W., Kilicman A., “Series Expansion and Fourth-Order Global Pade Approximation For a Rough Heston Solution”, Mathematics, 8:11 (2020), 1968  crossref  isi
    11. Starovoitov A.P. Kechko E.P., “Asymptotics For Hermite-Pade Approximants Associated With the Mittag-Leffler Functions”, Lobachevskii J. Math., 41:11, SI (2020), 2295–2302  crossref  mathscinet  isi  scopus
    12. Taghavian H., “The Use of Partition Polynomial Series in Laplace Inversion of Composite Functions With Applications in Fractional Calculus”, Math. Meth. Appl. Sci., 42:7 (2019), 2169–2189  crossref  mathscinet  zmath  isi  scopus
    13. Gatheral J., Radoicic R., “Rational Approximation of the Rough Heston Solution”, Int. J. Theor. Appl. Financ., 22:3 (2019), 1950010  crossref  mathscinet  zmath  isi
    14. Iyiola O.S., Asante-Asamani E.O., Wade B.A., “a Real Distinct Poles Rational Approximation of Generalized Mittag-Leffler Functions and Their Inverses: Applications to Fractional Calculus”, J. Comput. Appl. Math., 330 (2018), 307–317  crossref  mathscinet  zmath  isi  scopus
    15. M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov, “Skorost skhodimosti kvadratichnykh approksimatsii Ermita–Pade vyrozhdennykh gipergeometricheskikh funktsii”, PFMT, 2018, no. 1(34), 71–78  mathnet
    16. A. P. Starovoitov, “Hermite–Padé approximants of the Mittag-Leffler functions”, Proc. Steklov Inst. Math., 301 (2018), 228–244  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov, “Approksimatsii Ermita–Pade vyrozhdennykh gipergeometricheskikh funktsii”, PFMT, 2017, no. 2(31), 69–74  mathnet
    18. A. P. Starovoitov, “Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions”, Math. Notes, 102:2 (2017), 277–288  mathnet  crossref  crossref  mathscinet  isi  elib
    19. A. P. Starovoitov, E. P. Kechko, “On Some Properties of Hermite–Padé Approximants to an Exponential System”, Proc. Steklov Inst. Math., 298 (2017), 317–333  mathnet  crossref  crossref  isi  elib
    20. Caibin Zeng, Yang Quan Chen, “Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse”, FCAA, 18:6 (2015), 1492  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:877
    Russian version PDF:325
    English version PDF:26
    References:92
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025