|
This article is cited in 29 scientific papers (total in 29 papers)
Padé approximants of the Mittag-Leffler functions
A. P. Starovoitov, N. A. Starovoitova Francisk Skorina Gomel State University
Abstract:
It is shown that for $m\le n$ the Padé approximants
$\{\pi_{n,m}(\,\cdot\,;F_{\gamma})\}$, which locally deliver the best rational
approximations to the Mittag-Leffler functions $F_\gamma$, approximate
the $F_\gamma$ as $n\to\infty$ uniformly on the compact set
$D=\{z:|z|\le1\}$ at a rate asymptotically
equal to the best possible one. In particular, analogues of the well-known
results of Braess and Trefethen relating to the approximation of $\exp{z}$
are proved for the Mittag-Leffler functions.
Bibliography: 28 titles.
Received: 08.08.2006 and 11.04.2007
Citation:
A. P. Starovoitov, N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions”, Sb. Math., 198:7 (2007), 1011–1023
Linking options:
https://www.mathnet.ru/eng/sm2662https://doi.org/10.1070/SM2007v198n07ABEH003871 https://www.mathnet.ru/eng/sm/v198/i7/p109
|
|