Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 61, Issue 2, Pages 437–460
DOI: https://doi.org/10.1070/SM1988v061n02ABEH003217
(Mi sm2619)
 

This article is cited in 9 scientific papers (total in 9 papers)

On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions

V. Yu. Shelepov
References:
Abstract: The author examines the solution of a linear second order uniformly elliptic equation with variable coefficients defined inside a domain whose boundary is locally representable with the aid of the difference of convex functions (the spatial analog of Radon domain without cusps in the plane). We introduce the concept of "$p$-area integral", generalizing the known Luzin area integral. Local and integral theorems are obtained on the connection between this integral and the nontangential maximal function of the solution, and also the conditions for existence of nontangential boundary values almost everywhere and in the $L_2$-metric.
Bibliography: 17 titles.
Received: 18.07.1985 and 12.09.1986
Bibliographic databases:
UDC: 517.9
MSC: 35J25, 35J67
Language: English
Original paper language: Russian
Citation: V. Yu. Shelepov, “On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions”, Math. USSR-Sb., 61:2 (1988), 437–460
Citation in format AMSBIB
\Bibitem{She87}
\by V.~Yu.~Shelepov
\paper On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions
\jour Math. USSR-Sb.
\yr 1988
\vol 61
\issue 2
\pages 437--460
\mathnet{http://mi.mathnet.ru//eng/sm2619}
\crossref{https://doi.org/10.1070/SM1988v061n02ABEH003217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=911802}
\zmath{https://zbmath.org/?q=an:0686.35051|0646.35035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987R193700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84956082069}
Linking options:
  • https://www.mathnet.ru/eng/sm2619
  • https://doi.org/10.1070/SM1988v061n02ABEH003217
  • https://www.mathnet.ru/eng/sm/v175/i4/p446
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:406
    Russian version PDF:109
    English version PDF:22
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024