Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 4, Pages 449–467
DOI: https://doi.org/10.1070/SM1981v039n04ABEH001527
(Mi sm2613)
 

This article is cited in 27 scientific papers (total in 27 papers)

Stabilization of solutions of the first mixed problem for a parabolic equation of second order

F. Kh. Mukminov
References:
Abstract: The behavior for large time of the solution $u(t,x)$ in an unbounded domain $\Omega\subset R_n$ of the first mixed problem for the parabolic equation
\begin{gather} u_t=(a_{ij}(t,x)u_{x_j})_{x_i},\qquad(t,x)\in(t>0)\times\Omega,\\ \gamma^{-1}|y|^2\leqslant a_{ij}(t,x)y_iy_j\leqslant\gamma|y|^2, \end{gather}
with initial function $\varphi$, $\operatorname{supp}\varphi\subset K_{R_0}$, $K_r=\{|x|<r\}$, is investigated. It is shown that the function $\lambda(r)$, which for each fixed $r$ is the first eigenvalue of the Dirichlet problem for the operator $-\Delta$ in $\Omega_r=\Omega\cap K_r$, for a certain class of domains determines the rate at which the solution $u(t,x)$ tends to zero as $t\to\infty$. Namely, let $r(t)$ be the function inverse to the monotone increasing function $F(r)=r/\sqrt{\lambda(r)}$. Then for all $t\geqslant T$ and all $x$ in $\Omega$
\begin{equation} |u(t,x)|\leqslant M\exp\biggl(-\varkappa\,\frac{r^2(t)}t\biggr)\|\varphi\|_{L_2(\Omega)}. \end{equation}
Here the constant $\varkappa$ depends only on $n$ and $\gamma$ of (2), while $T$ and $M$ depend on $\Omega$, $\gamma$, and $R_0$. It is proved that for a certain class of domains the estimate (3) is in a sense best possible.
Bibliography: 13 titles.
Received: 23.10.1979
Bibliographic databases:
UDC: 517.946
MSC: 35K20, 35B40
Language: English
Original paper language: Russian
Citation: F. Kh. Mukminov, “Stabilization of solutions of the first mixed problem for a parabolic equation of second order”, Math. USSR-Sb., 39:4 (1981), 449–467
Citation in format AMSBIB
\Bibitem{Muk80}
\by F.~Kh.~Mukminov
\paper Stabilization of solutions of the first mixed problem for a~parabolic equation of second order
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 4
\pages 449--467
\mathnet{http://mi.mathnet.ru//eng/sm2613}
\crossref{https://doi.org/10.1070/SM1981v039n04ABEH001527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=571981}
\zmath{https://zbmath.org/?q=an:0461.35050|0431.35047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981ML42400002}
Linking options:
  • https://www.mathnet.ru/eng/sm2613
  • https://doi.org/10.1070/SM1981v039n04ABEH001527
  • https://www.mathnet.ru/eng/sm/v153/i4/p503
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024