Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1979, Volume 35, Issue 3, Pages 301–316
DOI: https://doi.org/10.1070/SM1979v035n03ABEH001481
(Mi sm2610)
 

This article is cited in 12 scientific papers (total in 12 papers)

Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$

A. B. Aleksandrov
References:
Abstract: In this paper the solution to some problems concerning rational approximation in the $L^p$-metric ($p\in(0,1)$) is given. The following is a typical problem: to describe the closure in the space $L^p[-1,1]$ of the linear hull of the Cauchy family $\{1/(x-a)\}_{a\in[-1,1]}.$ In the paper it is shown that this closure consists of all functions $f\in L^p[-1,1]$ for which there exists a functon $\tilde f$, analytic in $\mathbf C\setminus[-1,1]$, decreasing to zero at infinity, and such that $f(x)=\lim_{y\to0+}\tilde f(x+iy)=\lim_{y\to0+}\tilde f(x-iy)$ for almost all $x\in[-1,1]$.
Bibliography: 6 titles.
Received: 06.12.1977
Bibliographic databases:
UDC: 517.5
MSC: 41A20, 42A50
Language: English
Original paper language: Russian
Citation: A. B. Aleksandrov, “Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for $L^p$-spaces with $p\in(0,1)$”, Math. USSR-Sb., 35:3 (1979), 301–316
Citation in format AMSBIB
\Bibitem{Ale78}
\by A.~B.~Aleksandrov
\paper Approximation by rational functions, and an analogue of the M.~Riesz theorem on conjugate functions for $L^p$-spaces with~$p\in(0,1)$
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 3
\pages 301--316
\mathnet{http://mi.mathnet.ru//eng/sm2610}
\crossref{https://doi.org/10.1070/SM1979v035n03ABEH001481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=510139}
\zmath{https://zbmath.org/?q=an:0426.30005|0412.30005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JD23700001}
Linking options:
  • https://www.mathnet.ru/eng/sm2610
  • https://doi.org/10.1070/SM1979v035n03ABEH001481
  • https://www.mathnet.ru/eng/sm/v149/i1/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024