Abstract:
In this paper the solution to some problems concerning rational approximation in the Lp-metric (p∈(0,1)) is given. The following is a typical problem: to describe the closure in the space Lp[−1,1] of the linear hull of the Cauchy family {1/(x−a)}a∈[−1,1]. In the paper it is shown that this closure consists of all functions f∈Lp[−1,1] for which there exists a functon ˜f, analytic in C∖[−1,1], decreasing to zero at infinity, and such that f(x)=limy→0+˜f(x+iy)=limy→0+˜f(x−iy) for almost all x∈[−1,1].
Bibliography: 6 titles.
Citation:
A. B. Aleksandrov, “Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for Lp-spaces with p∈(0,1)”, Math. USSR-Sb., 35:3 (1979), 301–316
\Bibitem{Ale78}
\by A.~B.~Aleksandrov
\paper Approximation by rational functions, and an analogue of the M.~Riesz theorem on conjugate functions for $L^p$-spaces with~$p\in(0,1)$
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 3
\pages 301--316
\mathnet{http://mi.mathnet.ru/eng/sm2610}
\crossref{https://doi.org/10.1070/SM1979v035n03ABEH001481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=510139}
\zmath{https://zbmath.org/?q=an:0426.30005|0412.30005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JD23700001}
Linking options:
https://www.mathnet.ru/eng/sm2610
https://doi.org/10.1070/SM1979v035n03ABEH001481
https://www.mathnet.ru/eng/sm/v149/i1/p3
This publication is cited in the following 12 articles:
Guan-Tie Deng, Hai-Chou Li, Tao Qian, “Hardy space decompositions of Lp(ℝn) for 0 < p < 1 with rational approximation”, Complex Variables and Elliptic Equations, 64:4 (2019), 606
Deng Guantie, Li Haichou, Qian Tao, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 189
Guantie Deng, Tao Qian, “Rational Approximation of Functions in Hardy Spaces”, Complex Anal. Oper. Theory, 10:5 (2016), 903
A. B. Aleksandrov, “Approximation by M. Riesz's kernels in Lp for p<1”, J. Math. Sci. (N. Y.), 134:4 (2006), 2239–2257
Haldimann A., Jarchow H., “Nevanlinna Algebras”, Studia Math., 147:3 (2001), 243–268
Kalton N., “Analytic-Functions in Non-Locally Convex-Spaces and Applications”, Studia Math., 83:3 (1986), 275–303
N. J. Kalton, Lecture Notes in Mathematics, 1221, Probability and Banach Spaces, 1986, 114
Shapiro J., “Linear Topological Properties of the Harmonic Hardy-Spaces Hp for 0 Less-Than P Less-Than 1”, Ill. J. Math., 29:2 (1985), 311–339
N. J. Kalton, “Locally Complemented Subspaces and ℒp-Spaces for 0 < p < 1”, Math Nachr, 115:1 (1984), 71
Aleksandrov A., “Invariant Subspaces of the Backward Shift Operator in the Smirnov Class”, 1043, 1984, 393–395
A. B. Aleksandrov, “The existence of inner functions in the ball”, Math. USSR-Sb., 46:2 (1983), 143–159
Alexandrov A., “The Hardy-Classes Hp for P-Less-Than-1 and Quasi-Inner Functions in a Ball”, 262, no. 5, 1982, 1033–1036