Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1979, Volume 35, Issue 3, Pages 301–316
DOI: https://doi.org/10.1070/SM1979v035n03ABEH001481
(Mi sm2610)
 

This article is cited in 12 scientific papers (total in 12 papers)

Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for Lp-spaces with p(0,1)

A. B. Aleksandrov
References:
Abstract: In this paper the solution to some problems concerning rational approximation in the Lp-metric (p(0,1)) is given. The following is a typical problem: to describe the closure in the space Lp[1,1] of the linear hull of the Cauchy family {1/(xa)}a[1,1]. In the paper it is shown that this closure consists of all functions fLp[1,1] for which there exists a functon ˜f, analytic in C[1,1], decreasing to zero at infinity, and such that f(x)=limy0+˜f(x+iy)=limy0+˜f(xiy) for almost all x[1,1].
Bibliography: 6 titles.
Received: 06.12.1977
Bibliographic databases:
UDC: 517.5
MSC: 41A20, 42A50
Language: English
Original paper language: Russian
Citation: A. B. Aleksandrov, “Approximation by rational functions, and an analogue of the M. Riesz theorem on conjugate functions for Lp-spaces with p(0,1)”, Math. USSR-Sb., 35:3 (1979), 301–316
Citation in format AMSBIB
\Bibitem{Ale78}
\by A.~B.~Aleksandrov
\paper Approximation by rational functions, and an analogue of the M.~Riesz theorem on conjugate functions for $L^p$-spaces with~$p\in(0,1)$
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 3
\pages 301--316
\mathnet{http://mi.mathnet.ru/eng/sm2610}
\crossref{https://doi.org/10.1070/SM1979v035n03ABEH001481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=510139}
\zmath{https://zbmath.org/?q=an:0426.30005|0412.30005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JD23700001}
Linking options:
  • https://www.mathnet.ru/eng/sm2610
  • https://doi.org/10.1070/SM1979v035n03ABEH001481
  • https://www.mathnet.ru/eng/sm/v149/i1/p3
  • This publication is cited in the following 12 articles:
    1. Guan-Tie Deng, Hai-Chou Li, Tao Qian, “Hardy space decompositions of Lp(ℝn) for 0 < p < 1 with rational approximation”, Complex Variables and Elliptic Equations, 64:4 (2019), 606  crossref
    2. Deng Guantie, Li Haichou, Qian Tao, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 189  crossref
    3. Guantie Deng, Tao Qian, “Rational Approximation of Functions in Hardy Spaces”, Complex Anal. Oper. Theory, 10:5 (2016), 903  crossref
    4. A. B. Aleksandrov, “Approximation by M. Riesz's kernels in Lp for p<1”, J. Math. Sci. (N. Y.), 134:4 (2006), 2239–2257  mathnet  crossref  mathscinet  zmath  elib  elib
    5. Haldimann A., Jarchow H., “Nevanlinna Algebras”, Studia Math., 147:3 (2001), 243–268  crossref  mathscinet  zmath  isi
    6. Kalton N., “Analytic-Functions in Non-Locally Convex-Spaces and Applications”, Studia Math., 83:3 (1986), 275–303  crossref  mathscinet  isi
    7. N. J. Kalton, Lecture Notes in Mathematics, 1221, Probability and Banach Spaces, 1986, 114  crossref
    8. Shapiro J., “Linear Topological Properties of the Harmonic Hardy-Spaces Hp for 0 Less-Than P Less-Than 1”, Ill. J. Math., 29:2 (1985), 311–339  crossref  mathscinet  zmath  isi
    9. N. J. Kalton, “Locally Complemented Subspaces and ℒp-Spaces for 0 < p < 1”, Math Nachr, 115:1 (1984), 71  crossref  mathscinet  zmath  isi
    10. Aleksandrov A., “Invariant Subspaces of the Backward Shift Operator in the Smirnov Class”, 1043, 1984, 393–395  isi
    11. A. B. Aleksandrov, “The existence of inner functions in the ball”, Math. USSR-Sb., 46:2 (1983), 143–159  mathnet  crossref  mathscinet  zmath
    12. Alexandrov A., “The Hardy-Classes Hp for P-Less-Than-1 and Quasi-Inner Functions in a Ball”, 262, no. 5, 1982, 1033–1036  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:564
    Russian version PDF:173
    English version PDF:42
    References:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025