Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 3, Pages 359–386
DOI: https://doi.org/10.1070/SM1981v039n03ABEH001521
(Mi sm2600)
 

This article is cited in 23 scientific papers (total in 23 papers)

Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space

Yu. A. Aminov
References:
Abstract: This paper considers regular submanifolds of Euclidean space $E^N$. It is shown that if $R^m$ is a submanifold of negative curvature of $E^N$ and at each point there are $m$ principal directions, then there are hypersurfaces of $R^m$ orthogonal to them; these can be taken as the coordinate hypersurfaces. Furthermore, general properties of an isometric immersion of $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ are considered. It is proved that, for any $k$-dimensional submanifold of $L^n\subset E^{2n-1}$ for $k\geqslant2$ and $n>2$, the $k$-dimensional volume of its image in $G_{n-1,2n-1}$ under a Grassmann mapping of $L^n$ is greater than the volume of its inverse image. The curvature $\overline K$ of $G_{n-1,2n-1}$ for elements of area tangent to the Grassmann image of $L^n$ lie in the open interval $(0,1)$. A formula is obtained for the curvature of a Grassmann manifold for elements of area tangent to the Grassmann image of an arbitrary submanifold of $E^N$, expressed in terms of the second quadratic forms of this submanifold.
The fundamental system of equations of an immersion of $L^n$ in $E^{2n-1}$ is investigated. Immersions of $L^3$ in $E^5$ under which one family of lines of curvature is composed of $L^3$ geodesics of are considered.
Bibliography: 15 titles.
Received: 01.08.1979
Bibliographic databases:
UDC: 513.82
MSC: Primary 53C42; Secondary 53A35
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space”, Math. USSR-Sb., 39:3 (1981), 359–386
Citation in format AMSBIB
\Bibitem{Ami80}
\by Yu.~A.~Aminov
\paper Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 3
\pages 359--386
\mathnet{http://mi.mathnet.ru//eng/sm2600}
\crossref{https://doi.org/10.1070/SM1981v039n03ABEH001521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=568985}
\zmath{https://zbmath.org/?q=an:0461.53034|0431.53023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK40700004}
Linking options:
  • https://www.mathnet.ru/eng/sm2600
  • https://doi.org/10.1070/SM1981v039n03ABEH001521
  • https://www.mathnet.ru/eng/sm/v153/i3/p402
    Erratum
    This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024