Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 3, Pages 359–386
DOI: https://doi.org/10.1070/SM1981v039n03ABEH001521
(Mi sm2600)
 

This article is cited in 23 scientific papers (total in 23 papers)

Isometric immersions of domains of n-dimensional Lobachevsky space in (2n1)-dimensional Euclidean space

Yu. A. Aminov
References:
Abstract: This paper considers regular submanifolds of Euclidean space EN. It is shown that if Rm is a submanifold of negative curvature of EN and at each point there are m principal directions, then there are hypersurfaces of Rm orthogonal to them; these can be taken as the coordinate hypersurfaces. Furthermore, general properties of an isometric immersion of n-dimensional Lobachevsky space Ln in E2n1 are considered. It is proved that, for any k-dimensional submanifold of LnE2n1 for k2 and n>2, the k-dimensional volume of its image in Gn1,2n1 under a Grassmann mapping of Ln is greater than the volume of its inverse image. The curvature ¯K of Gn1,2n1 for elements of area tangent to the Grassmann image of Ln lie in the open interval (0,1). A formula is obtained for the curvature of a Grassmann manifold for elements of area tangent to the Grassmann image of an arbitrary submanifold of EN, expressed in terms of the second quadratic forms of this submanifold.
The fundamental system of equations of an immersion of Ln in E2n1 is investigated. Immersions of L3 in E5 under which one family of lines of curvature is composed of L3 geodesics of are considered.
Bibliography: 15 titles.
Received: 01.08.1979
Bibliographic databases:
UDC: 513.82
MSC: Primary 53C42; Secondary 53A35
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “Isometric immersions of domains of n-dimensional Lobachevsky space in (2n1)-dimensional Euclidean space”, Math. USSR-Sb., 39:3 (1981), 359–386
Citation in format AMSBIB
\Bibitem{Ami80}
\by Yu.~A.~Aminov
\paper Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 3
\pages 359--386
\mathnet{http://mi.mathnet.ru/eng/sm2600}
\crossref{https://doi.org/10.1070/SM1981v039n03ABEH001521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=568985}
\zmath{https://zbmath.org/?q=an:0461.53034|0431.53023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK40700004}
Linking options:
  • https://www.mathnet.ru/eng/sm2600
  • https://doi.org/10.1070/SM1981v039n03ABEH001521
  • https://www.mathnet.ru/eng/sm/v153/i3/p402
    Erratum
    This publication is cited in the following 23 articles:
    1. M. Dajczer, C. -R. Onti, Th. Vlachos, “The Codimension of Submanifolds with Negative Extrinsic Curvature”, Results Math, 78:2 (2023)  crossref
    2. Marcos Dajczer, Ruy Tojeiro, Universitext, Submanifold Theory, 2019, 139  crossref
    3. Marcos Dajczer, Ruy Tojeiro, Universitext, Submanifold Theory, 2019, 1  crossref
    4. J. L. Cieslinski, “Discretization of multidimensional submanifolds associated with Spin-valued spectral problems”, J. Math. Sci., 149:1 (2008), 1032–1038  mathnet  crossref  mathscinet  zmath  elib
    5. V. T. Lisitsa, “Multidimensional surfaces with a flat normal connection with constant curvature of the Grassmann image”, Russian Math. (Iz. VUZ), 48:5 (2004), 44–48  mathnet  mathscinet  zmath  elib
    6. Yu. A. Aminov, Ya. Cheshlinskii, “Isometric immersions of domains of the Lobachevskii space into spheres and Euclidean spaces, and a geometric interpretation of a spectral parameter”, Russian Math. (Iz. VUZ), 48:10 (2004), 16–29  mathnet  mathscinet  zmath
    7. J. L. Cieslinski, “Geometry of Submanifolds Derived from Spin-Valued Spectral Problems”, Theoret. and Math. Phys., 137:1 (2003), 1396–1405  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. A. A. Borisenko, “Isometric immersions of space forms into Riemannian and pseudo-Riemannian spaces of constant curvature”, Russian Math. Surveys, 56:3 (2001), 425–497  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. M SAVELIEV, A RAZUMOV, “Some explicit solutions of the Lamé and Bourlet type equations”, Bulletin des Sciences Mathématiques, 123:1 (1999), 59  crossref  mathscinet  zmath  elib
    10. L. A. Masal'tsev, “On minimal submanifolds of constant curvature in Euclidean space”, Russian Math. (Iz. VUZ), 42:9 (1998), 61–62  mathnet  mathscinet  zmath  elib
    11. Nikolayevsky YA., “Non-Immersion Theorem for a Class of Hyperbolic Manifolds”, Differ. Geom. Appl., 9:3 (1998), 239–242  crossref  mathscinet  zmath  isi
    12. Cieslinski J., “The Spectral Interpretation of N-Spaces of Constant Negative Curvature Immersed in R2N-1”, Phys. Lett. A, 236:5-6 (1997), 425–430  crossref  mathscinet  zmath  adsnasa  isi
    13. A. V. Razumov, M. V. Saveliev, “Multidimensional Toda type systems”, Theoret. and Math. Phys., 112:2 (1997), 999–1022  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. Yu. A. Aminov, “Geometry of the Grassmann image of a local isometric immersion of Lobachevskii n-dimensional isometric immersion of Lobachevskii n-dimensional”, Sb. Math., 188:1 (1997), 1–27  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. A. A. Borisenko, Yu. A. Nikolaevskii, “Grassmann manifolds and the Grassmann image of submanifolds”, Russian Math. Surveys, 46:2 (1991), 45–94  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    16. Yu. A. Aminov, “Isometric immersions, with flat normal connection, of domains of n-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field”, Math. USSR-Sb., 65:2 (1990), 279–303  mathnet  crossref  mathscinet  zmath
    17. G. L. Rcheulishvili, M. V. Saveliev, “Multidimensional nonlinear systems related to the Grassman manifolds BI, DI”, Funct. Anal. Appl., 21:4 (1987), 332–333  mathnet  crossref  mathscinet  zmath  isi
    18. Saveliev M., “Multidimensional Nonlinear Equations - Bourlette-Type Systems and their Generalizations”, 292, no. 3, 1987, 582–585  mathscinet  isi
    19. M. V. Saveliev, “Multidimensional nonlinear systems”, Theoret. and Math. Phys., 69:3 (1986), 1234–1240  mathnet  crossref  mathscinet  zmath  isi
    20. Frederico Xavier, “A non-immersion theorem for hyperbolic manifolds”, Comment Math Helv, 60:1 (1985), 280  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:586
    Russian version PDF:160
    English version PDF:30
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025