Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 9, Pages 1385–1413
DOI: https://doi.org/10.1070/SM1997v188n09ABEH000260
(Mi sm260)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the classification of the maximal arithmetic subgroups of simply connected groups

A. A. Ryzhikov, V. I. Chernousov

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus
References:
Abstract: Let $G\subset \operatorname {GL}_n$ be a simply connected simple algebraic group defined over a field $K$ of algebraic numbers and let $T$ be the set of all non-Archimedean valuations $v$ of the field $K$. As is well known, each maximal arithmetic subgroup $\Gamma \subset G$ can be uniquely recovered by means of some collection of parachoric subgroups; to be more precise, there exist parachoric subgroups $M_v\subset G(K_v)$, $v\in T$, that have maximal types and satisfy the relation $\Gamma ={\mathrm N}_G(M)$, where $M=G(K)\cap \prod _{v\in T}M_v$. Thus, there naturally arises the following question: for what collections $\{M_v\}_{v\in T}$ of parachoric subgroups $M_v\subset G(K_v)$ of maximal types is the above subgroup $\Gamma \subset G$ a maximal arithmetic subgroup of $G$? Using Rohlfs's cohomology criterion for the maximality of an arithmetic subgroup, necessary and sufficient conditions for the maximality of the above arithmetic subgroup $\Gamma \subset G$ are obtained. The answer is given in terms of the existence of elements of the field $K$ with prescribed divisibility properties.
Received: 30.12.1996
Bibliographic databases:
UDC: 512.743
MSC: Primary 20G15; Secondary 11E57, 14L35, 14L40
Language: English
Original paper language: Russian
Citation: A. A. Ryzhikov, V. I. Chernousov, “On the classification of the maximal arithmetic subgroups of simply connected groups”, Sb. Math., 188:9 (1997), 1385–1413
Citation in format AMSBIB
\Bibitem{RyzChe97}
\by A.~A.~Ryzhikov, V.~I.~Chernousov
\paper On the classification of the~maximal arithmetic subgroups of simply connected groups
\jour Sb. Math.
\yr 1997
\vol 188
\issue 9
\pages 1385--1413
\mathnet{http://mi.mathnet.ru//eng/sm260}
\crossref{https://doi.org/10.1070/SM1997v188n09ABEH000260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481667}
\zmath{https://zbmath.org/?q=an:0899.20026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071663400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031314515}
Linking options:
  • https://www.mathnet.ru/eng/sm260
  • https://doi.org/10.1070/SM1997v188n09ABEH000260
  • https://www.mathnet.ru/eng/sm/v188/i9/p127
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:183
    English version PDF:22
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024