Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 2, Pages 227–242
DOI: https://doi.org/10.1070/SM1981v039n02ABEH001486
(Mi sm2587)
 

This article is cited in 8 scientific papers (total in 8 papers)

The local ergodic theorem for groups of unitary operators and second order stationary processes

V. F. Gaposhkin
References:
Abstract: Let $(U_t)^\infty_{-\infty}$, be a strongly continuous unitary group in $L_2(X,S,\mu)$, where $\mu$ is a $\sigma$-finite measure.
The local ergodic theorem is the relation
\begin{equation} \lim_{t\to0}\frac1t\int^t_0(U_\tau f)(x)\,d\tau=f(x)\quad \text{a.\,e.} \end{equation}
for $f\in L_2(X)$. It is shown that this relation is not satisfied for all $f\in L_2(X)$ and $\{U_t\}$. Necessary and sufficient conditions are obtained for the local ergodic theorem in terms of properties of the spectral measure $\{E(d\lambda)f\}$, where $\{E(d\lambda)\}$ is the resolution of the identity corresponding to the group $(U_t)$. In particular, (1) is satisfied if the integral
$$ \int^\infty_{-\infty}[\log\log(\lambda^2+2)]^2\cdot\|E(d\lambda)f\|^2 $$
converges. Generalizations to multiparameter groups and homogeneous random fields are given.
Bibliography: 10 titles.
Received: 25.10.1978
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1980, Volume 111(153), Number 2, Pages 249–265
Bibliographic databases:
UDC: 519.214.9
MSC: Primary 47A35, 47D10, 60G10; Secondary 60G60
Language: English
Original paper language: Russian
Citation: V. F. Gaposhkin, “The local ergodic theorem for groups of unitary operators and second order stationary processes”, Mat. Sb. (N.S.), 111(153):2 (1980), 249–265; Math. USSR-Sb., 39:2 (1981), 227–242
Citation in format AMSBIB
\Bibitem{Gap80}
\by V.~F.~Gaposhkin
\paper The local ergodic theorem for groups of unitary operators and second order stationary processes
\jour Mat. Sb. (N.S.)
\yr 1980
\vol 111(153)
\issue 2
\pages 249--265
\mathnet{http://mi.mathnet.ru/sm2587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=564351}
\zmath{https://zbmath.org/?q=an:0462.47007|0438.47010}
\transl
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 2
\pages 227--242
\crossref{https://doi.org/10.1070/SM1981v039n02ABEH001486}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK40500005}
Linking options:
  • https://www.mathnet.ru/eng/sm2587
  • https://doi.org/10.1070/SM1981v039n02ABEH001486
  • https://www.mathnet.ru/eng/sm/v153/i2/p249
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:367
    Russian version PDF:90
    English version PDF:18
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024