Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1978, Volume 34, Issue 5, Pages 603–626
DOI: https://doi.org/10.1070/SM1978v034n05ABEH001331
(Mi sm2552)
 

This article is cited in 5 scientific papers (total in 5 papers)

On some characteristics of the growth of subharmonic functions

A. V. Bratishchev, Yu. F. Korobeinik
References:
Abstract: The connection between the growth of a function which is subharmonic in the plane and the growth of its associated Riesz measure is studied. The principal result (actually obtained in a more general form) is:
Theorem. {\it Suppose that the function $h(r)$ is differentiable on $(0,\infty)$, with $h'(x)>0$ and
$$ \lim_{x\to\infty}\frac{\ln x}{h(x)}=0,\qquad\lim_{x\to\infty}\frac{x\cdot h'(x)}{h(x)}=0. $$
Define
$$ \alpha_h(r)=\max_{1<\theta<\infty}\frac{\ln\theta}{h(\theta\cdot r)},\qquad\Delta_h=\varliminf_{r\to\infty}rh'(r)\alpha_h(r). $$
Suppose further that $\varphi(u)$ is a function which is subharmonic in $\mathbf R^2$, is of zero order, and has associated measure $\mu$. Then
\begin{gather*} \Delta_h\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)}\leqslant\varlimsup_{r\to\infty}\frac{M_\varphi(r)}{h(r)} \leqslant\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)},\\ \varliminf_{r\to\infty}\frac{M_\varphi(r)}{h(r)}\geqslant\varliminf_{r\to\infty}\frac{\mu(r)}{rh'(r)}, \end{gather*}
where
$$ \mu(r)=\mu(|z|\leqslant r),\qquadM_\varphi(r)\max\bigl\{0,\{\varphi(u):|u|=r\}\bigr\}. $$
If, in addition, $x\cdot h'(x)/h(x)$ is nonincreasing, then $\Delta_h\geqslant1/e$.}
Bibliography: 12 titles.
Received: 05.05.1977
Bibliographic databases:
UDC: 517.5
MSC: 31A05, 30D15
Language: English
Original paper language: Russian
Citation: A. V. Bratishchev, Yu. F. Korobeinik, “On some characteristics of the growth of subharmonic functions”, Math. USSR-Sb., 34:5 (1978), 603–626
Citation in format AMSBIB
\Bibitem{BraKor78}
\by A.~V.~Bratishchev, Yu.~F.~Korobeinik
\paper On some characteristics of the growth of subharmonic functions
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 5
\pages 603--626
\mathnet{http://mi.mathnet.ru//eng/sm2552}
\crossref{https://doi.org/10.1070/SM1978v034n05ABEH001331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=492328}
\zmath{https://zbmath.org/?q=an:0381.31001|0414.31001}
Linking options:
  • https://www.mathnet.ru/eng/sm2552
  • https://doi.org/10.1070/SM1978v034n05ABEH001331
  • https://www.mathnet.ru/eng/sm/v148/i1/p44
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024