|
This article is cited in 5 scientific papers (total in 5 papers)
On some characteristics of the growth of subharmonic functions
A. V. Bratishchev, Yu. F. Korobeinik
Abstract:
The connection between the growth of a function which is subharmonic in the plane and the growth of its associated Riesz measure is studied. The principal result (actually obtained in a more general form) is:
Theorem. {\it Suppose that the function $h(r)$ is differentiable on $(0,\infty)$, with $h'(x)>0$ and
$$
\lim_{x\to\infty}\frac{\ln x}{h(x)}=0,\qquad\lim_{x\to\infty}\frac{x\cdot h'(x)}{h(x)}=0.
$$
Define
$$
\alpha_h(r)=\max_{1<\theta<\infty}\frac{\ln\theta}{h(\theta\cdot r)},\qquad\Delta_h=\varliminf_{r\to\infty}rh'(r)\alpha_h(r).
$$
Suppose further that $\varphi(u)$ is a function which is subharmonic in $\mathbf R^2$, is of zero order, and has associated measure $\mu$. Then
\begin{gather*}
\Delta_h\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)}\leqslant\varlimsup_{r\to\infty}\frac{M_\varphi(r)}{h(r)}
\leqslant\varlimsup_{r\to\infty}\frac{\mu(r)}{rh'(r)},\\
\varliminf_{r\to\infty}\frac{M_\varphi(r)}{h(r)}\geqslant\varliminf_{r\to\infty}\frac{\mu(r)}{rh'(r)},
\end{gather*}
where
$$
\mu(r)=\mu(|z|\leqslant r),\qquadM_\varphi(r)\max\bigl\{0,\{\varphi(u):|u|=r\}\bigr\}.
$$
If, in addition, $x\cdot h'(x)/h(x)$ is nonincreasing, then $\Delta_h\geqslant1/e$.}
Bibliography: 12 titles.
Received: 05.05.1977
Citation:
A. V. Bratishchev, Yu. F. Korobeinik, “On some characteristics of the growth of subharmonic functions”, Math. USSR-Sb., 34:5 (1978), 603–626
Linking options:
https://www.mathnet.ru/eng/sm2552https://doi.org/10.1070/SM1978v034n05ABEH001331 https://www.mathnet.ru/eng/sm/v148/i1/p44
|
|