Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1978, Volume 34, Issue 5, Pages 561–592
DOI: https://doi.org/10.1070/SM1978v034n05ABEH001323
(Mi sm2550)
 

Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth

S. A. Apresyan
References:
Abstract: Let $\mathbf D=\{z\in\mathbf C:|z|<1\}$; let $U_\varphi(\mathbf D)$ be the set of all functions $u$, subharmonic in $\mathbf D$, for which $u(z)<C_u\varphi(1/(1-|z|))$; and let $A_\varphi(\mathbf D)$ be the algebra of all functions $f$, analytic in $\mathbf D$, for which $\log|f(z)|<C_f\varphi(1/(1-|z|))$. We prove the following theorems subject to known restrictions on the regularity of growth of the function $\varphi$.
Theorem 1. If $\gamma$ is a continuous curve in $\mathbf D$ reaching out to the circle $\partial\mathbf D$ (i.e., $\gamma\cap\partial\mathbf D\ne\varnothing$), and if
$$ \varlimsup_{z\in\gamma,|z|\to1}\frac{u(z)}{\varphi^*(1/(1-|z|))}=-\infty, $$
then $u\equiv-\infty$.
Here, $\varphi^*(t)=t\bigl(\int_1^t(\varphi(x)/x^3)^{1/2}\,dx\bigr)^2$ for $a_\varphi\leqslant1$, $\varphi^*=\varphi$ for $1<a_\varphi\leqslant+\infty$; and $a_\varphi=\lim_{x\to\infty}\varphi'(x)x/\varphi(x)$.
Theorem 2. {\it In order that every closed ideal of the algebra $A_\varphi(\mathbf D)$ be a divisor ideal, it is necessary and sufficient that the condition $\int_1^\infty(\varphi(x)/x^3)^{1/2}\,dx=+\infty$ be satisfied.}
Here, we say that an ideal $I$ is a divisor ideal when $I=\{f\in A_\varphi(\mathbf D):k_f\geqslant k_I\}$, where $k_f(\xi)$ is the multiplicity of a zero of the function $f$ at the point $\xi$ and $k_I(\xi)=\min_{f\in I}k_f(\xi)$.
Figures: 5.
Bibliography: 33 titles.
Received: 17.11.1977
Bibliographic databases:
UDC: 517.549.8
MSC: Primary 46J15, 46H10, 30E15; Secondary 31A05
Language: English
Original paper language: Russian
Citation: S. A. Apresyan, “Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth”, Math. USSR-Sb., 34:5 (1978), 561–592
Citation in format AMSBIB
\Bibitem{Apr78}
\by S.~A.~Apresyan
\paper Localization of ideals and asymptotic uniqueness theorems for functions with restrictions on growth
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 5
\pages 561--592
\mathnet{http://mi.mathnet.ru//eng/sm2550}
\crossref{https://doi.org/10.1070/SM1978v034n05ABEH001323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=497927}
\zmath{https://zbmath.org/?q=an:0386.30030|0415.30039}
Linking options:
  • https://www.mathnet.ru/eng/sm2550
  • https://doi.org/10.1070/SM1978v034n05ABEH001323
  • https://www.mathnet.ru/eng/sm/v148/i1/p3
    Erratum
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:273
    Russian version PDF:88
    English version PDF:21
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024