|
This article is cited in 12 scientific papers (total in 12 papers)
On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval
M. M. Gekhtman
Abstract:
Consider the spectral problem ($0<x<1$)
$$
-y''(x)=\lambda\rho (x)y(x);\quad
y(0)=y(1)=0;\quad
\rho(x)>0;\quad
\rho(x)\in C_{[0,1]}.
$$
Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$.
Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then
$$
\lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty).
$$
2. For any $\varepsilon>0$ there exists a continuous weight
$\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that
$$
\varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty).
$$ }
Bibliography: 17 titles.
Received: 07.06.1984 and 25.02.1986
Citation:
M. M. Gekhtman, “On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval”, Math. USSR-Sb., 61:1 (1988), 185–199
Linking options:
https://www.mathnet.ru/eng/sm2543https://doi.org/10.1070/SM1988v061n01ABEH003201 https://www.mathnet.ru/eng/sm/v175/i2/p184
|
|