Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 61, Issue 1, Pages 185–199
DOI: https://doi.org/10.1070/SM1988v061n01ABEH003201
(Mi sm2543)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval

M. M. Gekhtman
References:
Abstract: Consider the spectral problem ($0<x<1$)
$$ -y''(x)=\lambda\rho (x)y(x);\quad y(0)=y(1)=0;\quad \rho(x)>0;\quad \rho(x)\in C_{[0,1]}. $$

Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$.
Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then
$$ \lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty). $$

2. For any $\varepsilon>0$ there exists a continuous weight $\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that
$$ \varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty). $$
}
Bibliography: 17 titles.
Received: 07.06.1984 and 25.02.1986
Bibliographic databases:
UDC: 517.43
MSC: Primary 34B25; Secondary 34E05, 47E05
Language: English
Original paper language: Russian
Citation: M. M. Gekhtman, “On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval”, Math. USSR-Sb., 61:1 (1988), 185–199
Citation in format AMSBIB
\Bibitem{Gek87}
\by M.~M.~Gekhtman
\paper On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval
\jour Math. USSR-Sb.
\yr 1988
\vol 61
\issue 1
\pages 185--199
\mathnet{http://mi.mathnet.ru//eng/sm2543}
\crossref{https://doi.org/10.1070/SM1988v061n01ABEH003201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=905004}
\zmath{https://zbmath.org/?q=an:0658.34013|0636.34014}
Linking options:
  • https://www.mathnet.ru/eng/sm2543
  • https://doi.org/10.1070/SM1988v061n01ABEH003201
  • https://www.mathnet.ru/eng/sm/v175/i2/p184
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025