Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 61, Issue 1, Pages 167–183
DOI: https://doi.org/10.1070/SM1988v061n01ABEH003200
(Mi sm2542)
 

This article is cited in 58 scientific papers (total in 58 papers)

Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic

A. A. Premet
References:
Abstract: Let $K$ be an algebraically closed field of characteristic $p>0$, $G$ a universal Chevalley group over $K$ with an irreducible root system $R$, $B$ a basis of $R$, $Q_+$ the set of radical weights that are nonnegative with respect to the natural ordering associated with $B$, $P_{++}$ the set of dominant weights, and $e(R)$ the maximum of the squares of the ratios of the lengths of the roots in $R$. It is well known that $e(R)=1$ if $R$ is of type $A_n$, $D_n$, $E_6$, $E_7$, or $E_8$, $e(R)=2$ if $R$ is of type $B_n$, $C_n$, or $F_4$, and $e(R)=3$ if $R$ is of type $G_2$. A rational representation $\pi\colon G\to\mathrm{GL}(V)$ is called infinitesimally irreducible if its differential $d\pi$ defines an irreducible representation of the Lie algebra $\mathfrak g$ of the group $G$. Let $\mathfrak g_{\mathbf C}$ be a simple complex Lie algebra with the same root system as $G$.
In this paper it is proved that for $p>e(R)$ the system of weights of an infinitesimally irreducible representation $\pi$ of a group $G$ with highest weight $\lambda$ coincides with the system of weights of an irreducible complex representation $\pi_{\mathbf C}$ of a Lie algebra $\mathfrak g_{\mathbf C}$ with the same highest weight. In particular, the set of dominant weights of the representation is $(\lambda-Q_+)\cap P_{++}$.
Bibliography: 7 titles.
Received: 25.01.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1987, Volume 133(175), Number 2(6), Pages 167–183
Bibliographic databases:
UDC: 512.743.7
MSC: Primary 20G05, 20G15; Secondary 17B10
Language: English
Original paper language: Russian
Citation: A. A. Premet, “Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic”, Math. USSR-Sb., 61:1 (1988), 167–183
Citation in format AMSBIB
\Bibitem{Pre87}
\by A.~A.~Premet
\paper Weights of infinitesimally irreducible representations of Chevalley groupsover a~field of prime characteristic
\jour Math. USSR-Sb.
\yr 1988
\vol 61
\issue 1
\pages 167--183
\mathnet{http://mi.mathnet.ru//eng/sm2542}
\crossref{https://doi.org/10.1070/SM1988v061n01ABEH003200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=905003}
\zmath{https://zbmath.org/?q=an:0669.20035}
Linking options:
  • https://www.mathnet.ru/eng/sm2542
  • https://doi.org/10.1070/SM1988v061n01ABEH003200
  • https://www.mathnet.ru/eng/sm/v175/i2/p167
  • This publication is cited in the following 58 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:455
    Russian version PDF:141
    English version PDF:11
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024