Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1978, Volume 34, Issue 4, Pages 475–502
DOI: https://doi.org/10.1070/SM1978v034n04ABEH001222
(Mi sm2540)
 

This article is cited in 6 scientific papers (total in 6 papers)

A singular integral equation with small parameter on a finite interval

V. Yu. Novokshenov
References:
Abstract: The asymptotic properties of the following singular integral equation are investigated in the paper:
\begin{equation} \int_0^1\biggl[\frac1{x-t}+a(x-t,\varepsilon)\biggr]u_\varepsilon(t)\,dt =f(t), \end{equation}
where $\varepsilon>0$ is a small parameter and $f(x)\in C^\infty[0,1]$. Equation (1) is regarded as a boundary value problem for a one-dimensional elliptic pseudodifferential operator wtih piecewise smooth symbol. A typical example of the symbol is the function $\widetilde a(\lambda,\varepsilon)=\pi i\operatorname{sign}\lambda[1+e^{-\varepsilon|\lambda|}]$, which corresponds to an equation in the theory of dislocations.
The asymptotic expansion of the solution of equation (1) contains functions of boundary layer type that depend on the variables $\xi=\frac x\varepsilon$ and $\eta=\frac{1-x}\varepsilon$ and decrease powerlike at infinity. The matching of the boundary layer expansion with the exterior expansion (in the variable $x$) is carried out by means of a special two-scaled representation of the integrals of form (1), in which the function $u_\varepsilon(x)$ is replaced by its asymptotic series.
Bibliography: 10 titles.
Received: 15.02.1977
Bibliographic databases:
UDC: 517.948.34
MSC: 45E05
Language: English
Original paper language: Russian
Citation: V. Yu. Novokshenov, “A singular integral equation with small parameter on a finite interval”, Math. USSR-Sb., 34:4 (1978), 475–502
Citation in format AMSBIB
\Bibitem{Nov78}
\by V.~Yu.~Novokshenov
\paper A~singular integral equation with small parameter on a~finite interval
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 4
\pages 475--502
\mathnet{http://mi.mathnet.ru//eng/sm2540}
\crossref{https://doi.org/10.1070/SM1978v034n04ABEH001222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=493214}
\zmath{https://zbmath.org/?q=an:0391.45002|0437.45005}
Linking options:
  • https://www.mathnet.ru/eng/sm2540
  • https://doi.org/10.1070/SM1978v034n04ABEH001222
  • https://www.mathnet.ru/eng/sm/v147/i4/p543
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:412
    Russian version PDF:124
    English version PDF:23
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024