|
This article is cited in 4 scientific papers (total in 4 papers)
The existence of optimal quadrature formulas with given multiplicities of nodes
B. D. Boyanov
Abstract:
Suppose that $R_p(\overline x)$ is the error of the best method of integration in the class $W^r_p[a,b]$ with nodes $(x_k)_1^n$ of multiplicities $(\nu_k)_1^n$, i.e. $\overline x=\{(x_1,\nu_1),\dots,(x_n,\nu_n)\}$. It is then shown that for $1<p<\infty$ and for every system of multiplicities $(\nu_k)_1^n$ with $1\leqslant\nu_k\leqslant r$ for $k=1,\dots,n$,
the lower bound
$$
\inf\bigl\{R_p(\overline x)\mid\overline x=\{(x_1,\nu_1),\dots,(x_n,\nu_n)\},\,a\leqslant x_1<\dots<x_n\leqslant b\bigr\}
$$
is attained for some nodes $(x^*_k)_1^n$ with exactly the multiplicities $(\nu_k)_1^n$.
Moreover, $a<x^*_1$ and $x^*_n<b$ .
Bibliography: 20 titles.
Received: 23.02.1977
Citation:
B. D. Boyanov, “The existence of optimal quadrature formulas with given multiplicities of nodes”, Math. USSR-Sb., 34:3 (1978), 301–326
Linking options:
https://www.mathnet.ru/eng/sm2528https://doi.org/10.1070/SM1978v034n03ABEH001161 https://www.mathnet.ru/eng/sm/v147/i3/p342
|
|