Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 7, Pages 1071–1084
DOI: https://doi.org/10.1070/sm1997v188n07ABEH000252
(Mi sm252)
 

This article is cited in 9 scientific papers (total in 9 papers)

Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem

P. E. Zhidkov

Joint Institute for Nuclear Research
References:
Abstract: The eigenvalue problem for the Sturm–Liouville operator on the closed interval $[0,1]$ with potential depending on the spectral parameter and with zero Dirichlet boundary conditions is considered first. It is proved under certain assumptions about the potential that if a system of eigenfunctions of this problem contains a unique function with $n$ zeros in the interval $(0,1)$ for each non-negative integer $n$, then it is complete in the space $L_2(0,1)$ if and only if the functions in this system are linearly independent in $L_2(0,1)$. Next, this result is used in the study of the spectral problem for a certain non-linear operator of Sturm–Liouville type. The completeness in $L_2(0,1)$ of the corresponding eigenfunctions is proved.
Received: 01.08.1996
Bibliographic databases:
UDC: 517.927.25
MSC: 34B25, 34L10, 34B15
Language: English
Original paper language: Russian
Citation: P. E. Zhidkov, “Completeness of systems of eigenfunctions for the Sturm–Liouville operator with potential depending on the spectral parameter and for one non-linear problem”, Sb. Math., 188:7 (1997), 1071–1084
Citation in format AMSBIB
\Bibitem{Zhi97}
\by P.~E.~Zhidkov
\paper Completeness of systems of eigenfunctions for the~Sturm--Liouville operator with potential depending on the~spectral parameter and for one non-linear problem
\jour Sb. Math.
\yr 1997
\vol 188
\issue 7
\pages 1071--1084
\mathnet{http://mi.mathnet.ru//eng/sm252}
\crossref{https://doi.org/10.1070/sm1997v188n07ABEH000252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474858}
\zmath{https://zbmath.org/?q=an:0959.34018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286452}
Linking options:
  • https://www.mathnet.ru/eng/sm252
  • https://doi.org/10.1070/sm1997v188n07ABEH000252
  • https://www.mathnet.ru/eng/sm/v188/i7/p123
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024