Abstract:
Using the integral modulus of smoothness, estimates for the Fourier coefficients of a composition of functions are obtained in this paper. It is proved, for example, that for any function $f(x)\in C(0,2\pi)$ and any positive sequence $\{\varepsilon_n\}_{n=1}^\infty$ with
$$
1=\varepsilon_1\geqslant\varepsilon_2\geqslant\dotsb,\qquad\sum_{n=1}^\infty\frac{\varepsilon_n}n=\infty
$$
there exists a monotone continuous function $\tau(x)$ ($\tau(0)=0$, $\tau(2\pi)=2\pi$) such that
$$
|a_n(F)|+|b_n(F)|= O(\varepsilon_n n^{-1}+n^{-3/2}),
$$
where $a_n(F)$ and $b_n(F)$ are the Fourier coefficients of the function $F(x)=f(\tau(x))$.
Bibliography: 4 titles.
Citation:
A. A. Sahakian, “Integral moduli of smoothness and the Fourier coefficients of the composition of functions”, Math. USSR-Sb., 38:4 (1981), 549–561
\Bibitem{Sah79}
\by A.~A.~Sahakian
\paper Integral moduli of smoothness and the Fourier coefficients of the composition of functions
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 4
\pages 549--561
\mathnet{http://mi.mathnet.ru/eng/sm2514}
\crossref{https://doi.org/10.1070/SM1981v038n04ABEH001462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=562211}
\zmath{https://zbmath.org/?q=an:0542.42002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ11400007}
Linking options:
https://www.mathnet.ru/eng/sm2514
https://doi.org/10.1070/SM1981v038n04ABEH001462
https://www.mathnet.ru/eng/sm/v152/i4/p597
This publication is cited in the following 4 articles: