Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 4, Pages 549–561
DOI: https://doi.org/10.1070/SM1981v038n04ABEH001462
(Mi sm2514)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integral moduli of smoothness and the Fourier coefficients of the composition of functions

A. A. Sahakian
References:
Abstract: Using the integral modulus of smoothness, estimates for the Fourier coefficients of a composition of functions are obtained in this paper. It is proved, for example, that for any function $f(x)\in C(0,2\pi)$ and any positive sequence $\{\varepsilon_n\}_{n=1}^\infty$ with
$$ 1=\varepsilon_1\geqslant\varepsilon_2\geqslant\dotsb,\qquad\sum_{n=1}^\infty\frac{\varepsilon_n}n=\infty $$
there exists a monotone continuous function $\tau(x)$ ($\tau(0)=0$, $\tau(2\pi)=2\pi$) such that
$$ |a_n(F)|+|b_n(F)|= O(\varepsilon_n n^{-1}+n^{-3/2}), $$
where $a_n(F)$ and $b_n(F)$ are the Fourier coefficients of the function $F(x)=f(\tau(x))$.
Bibliography: 4 titles.
Received: 11.05.1979
Bibliographic databases:
UDC: 517.51
MSC: 42A16
Language: English
Original paper language: Russian
Citation: A. A. Sahakian, “Integral moduli of smoothness and the Fourier coefficients of the composition of functions”, Math. USSR-Sb., 38:4 (1981), 549–561
Citation in format AMSBIB
\Bibitem{Sah79}
\by A.~A.~Sahakian
\paper Integral moduli of smoothness and the Fourier coefficients of the composition of functions
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 4
\pages 549--561
\mathnet{http://mi.mathnet.ru//eng/sm2514}
\crossref{https://doi.org/10.1070/SM1981v038n04ABEH001462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=562211}
\zmath{https://zbmath.org/?q=an:0542.42002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ11400007}
Linking options:
  • https://www.mathnet.ru/eng/sm2514
  • https://doi.org/10.1070/SM1981v038n04ABEH001462
  • https://www.mathnet.ru/eng/sm/v152/i4/p597
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024