Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1978, Volume 34, Issue 1, Pages 1–24
DOI: https://doi.org/10.1070/SM1978v034n01ABEH001041
(Mi sm2513)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximation, by rational functions, of convex functions with given modulus of continuity

A. P. Bulanov
References:
Abstract: We denote by $R_n[f]$ the least deviation of the continuous function $f(x)$, $x\in[a,b]$, from the rational functions of order at most $n$.
We establish the following theorems.
Theorem 1. Let $f(x)$ be convex on $[a,b]$ $(-\infty<a<b<+\infty)$ with modulus of continuity $\omega(\delta,f)$. Then
$$ R_n[f]\leqslant c\frac{\ln^6n}{n^2}\max_{(b-a)e^{-n}\leqslant\theta\leqslant b-a}\biggl\{\omega(\theta)\ln\frac{b-a}{\theta}\biggr\},\qquad n=2,3,\dots, $$
where $c$ is an absolute constant.
\medskip Theorem 2. There exist a convex function $f^*(x)$ and a sequence $n_k\nearrow\infty$ such that 1) $\omega(\delta,f^*)\leqslant(\ln(e/\delta))^{-\gamma}$, $0<\delta\leqslant1$, and 2) $R_{n_k}[f^*]\geqslant c_1\gamma/n^{1-\gamma}_k$, where $c_1$ is an absolute constant.
Bibliography: 8 titles.
Received: 13.05.1977
Bibliographic databases:
UDC: 517.51
MSC: 41A20
Language: English
Original paper language: Russian
Citation: A. P. Bulanov, “Approximation, by rational functions, of convex functions with given modulus of continuity”, Math. USSR-Sb., 34:1 (1978), 1–24
Citation in format AMSBIB
\Bibitem{Bul78}
\by A.~P.~Bulanov
\paper Approximation, by rational functions, of convex functions with given modulus of continuity
\jour Math. USSR-Sb.
\yr 1978
\vol 34
\issue 1
\pages 1--24
\mathnet{http://mi.mathnet.ru//eng/sm2513}
\crossref{https://doi.org/10.1070/SM1978v034n01ABEH001041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481777}
\zmath{https://zbmath.org/?q=an:0382.41010|0403.41007}
Linking options:
  • https://www.mathnet.ru/eng/sm2513
  • https://doi.org/10.1070/SM1978v034n01ABEH001041
  • https://www.mathnet.ru/eng/sm/v147/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024