Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 2, Pages 207–226
DOI: https://doi.org/10.1070/SM1981v039n02ABEH001483
(Mi sm2501)
 

This article is cited in 9 scientific papers (total in 9 papers)

Some estimates for the partial indices of measurable matrix-valued functions

I. M. Spitkovsky
References:
Abstract: Tests are given for nonnegativity, nonpositivity, and stability of partial indices of measurable bounded $n\times n$ matrix-valued functions defined on a contour $\Gamma$ along which the operator $S$ of singular integration is bounded in the spaces $L_p$, $1<p<\infty$. In particular, a sufficient condition is given for the coincidence of the partial indices of a matrix-valued function $G$ formulated in terms of the Hausdorff set of the matrices $G(t)$, $t\in \Gamma$. As auxiliary results, necessary and sufficient conditions are given for the operators of the form $T_G=\frac12(I-S)|\operatorname{Im}(I-S)$ to be Fredholm, or $n$- or $d$-normal in the case $G\in E^\pm_\infty+C$, and the behavior of the factorization is studied under the multiplication by such matrix-valued functions $G$ ($E^\pm_\infty$ are the Smirnov classes in the domains with boundary $\Gamma$ and $C$ is the class of functions continuous on $\Gamma$).
In the case where $\Gamma$ is the unit circle, for the factorization in $L_2$ necessary and sufficient conditions are found for the nonnegativity (nonpositivity, and so on) of the partial indices. For a Lyapunov contour $\Gamma$ a sufficient condition (which is also necessary for $p=2$) is formulated for the vectorial boundary value problem of Riemann to be Fredholm in the spaces $L^n_p$ and $L^n_q$ ($q=p/(p-1)$).
Bibliography: 38 titles.
Received: 29.09.1978
Bibliographic databases:
UDC: 517.948.32+513.88
MSC: 30E25, 45E05
Language: English
Original paper language: Russian
Citation: I. M. Spitkovsky, “Some estimates for the partial indices of measurable matrix-valued functions”, Math. USSR-Sb., 39:2 (1981), 207–226
Citation in format AMSBIB
\Bibitem{Spi80}
\by I.~M.~Spitkovsky
\paper Some estimates for the partial indices of measurable matrix-valued functions
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 2
\pages 207--226
\mathnet{http://mi.mathnet.ru//eng/sm2501}
\crossref{https://doi.org/10.1070/SM1981v039n02ABEH001483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=564350}
\zmath{https://zbmath.org/?q=an:0463.30034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK40500004}
Linking options:
  • https://www.mathnet.ru/eng/sm2501
  • https://doi.org/10.1070/SM1981v039n02ABEH001483
  • https://www.mathnet.ru/eng/sm/v153/i2/p227
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024