Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 1, Pages 87–105
DOI: https://doi.org/10.1070/SM1981v039n01ABEH001472
(Mi sm2493)
 

This article is cited in 29 scientific papers (total in 29 papers)

Stabilization of solutions of the third mixed problem for a second order parabolic equation in a noncylindrical domain

V. I. Ushakov
References:
Abstract: This paper studies the behavior for large values of time $t$ of the solution of the third mixed problem in a noncylindrical domain $D\subset\mathbf R^{n+1}$ that expands as $t$ increases, for a linear second order parabolic equation in selfadjoint form without lower terms. In this connection the boundary condition is chosen so that the “energy conservation law” holds. For a very large class of domains a simple geometric characteristic of the domain is singled out-the function $V(t,\sqrt t)=\operatorname{mes}_n(D_t\cap\{|x|<\sqrt t\})$, where $D_t$ is the intersection of the domain $D$ with the hyperplane $t=\operatorname{const}$ – determining the stabilization speed of the solution. Namely, it is proved that a solution $u(t,x)$ of the above problem with initial function $\varphi$ from $L_1(D_0)$ satisfies the estimate
$$ \|u(t,x)\|_{L_\infty(D_t)}\leqslant\frac C{V(t,\sqrt t)}\|\varphi\|_{L_1(D_0)},\qquad t>0, $$
and the accuracy of this estimate is of the order of the convergence to zero as $t\to\infty$.
Bibliography: 6 titles.
Received: 13.06.1979
Bibliographic databases:
UDC: 517.946
MSC: Primary 35K15, 35K20, 35B40, 35D05; Secondary 35B45
Language: English
Original paper language: Russian
Citation: V. I. Ushakov, “Stabilization of solutions of the third mixed problem for a second order parabolic equation in a noncylindrical domain”, Math. USSR-Sb., 39:1 (1981), 87–105
Citation in format AMSBIB
\Bibitem{Ush80}
\by V.~I.~Ushakov
\paper Stabilization of solutions of the third mixed problem for a~second order parabolic equation in a~noncylindrical domain
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 1
\pages 87--105
\mathnet{http://mi.mathnet.ru//eng/sm2493}
\crossref{https://doi.org/10.1070/SM1981v039n01ABEH001472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560465}
\zmath{https://zbmath.org/?q=an:0462.35048|0428.35044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ97300004}
Linking options:
  • https://www.mathnet.ru/eng/sm2493
  • https://doi.org/10.1070/SM1981v039n01ABEH001472
  • https://www.mathnet.ru/eng/sm/v153/i1/p95
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024