Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 7, Pages 1085–1105
DOI: https://doi.org/10.1070/sm1997v188n07ABEH000249
(Mi sm249)
 

This article is cited in 1 scientific paper (total in 1 paper)

A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem

O. E. Orel

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper we obtain a criterion for the continuous and smooth orbital equivalence of integrable Hamiltonian systems with $n$ degrees of freedom in the vicinity of compact elliptic orbits. Moreover, we construct a complete orbital invariant for a non-degenerate integrable Hamiltonian system with two degrees of freedom in a neighbourhood of an elliptic singular point, and propose a rule from which to compute this orbital invariant. The orbital invariant is computed for integrable Lagrange systems in rigid body dynamics. In this way we find an explicit decomposition of all Lagrange systems into classes of orbitally equivalent ones in the vicinity of equilibria.
Received: 13.02.1997
Bibliographic databases:
UDC: 514.745.82
MSC: 70Hxx, 58F05
Language: English
Original paper language: Russian
Citation: O. E. Orel, “A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem”, Sb. Math., 188:7 (1997), 1085–1105
Citation in format AMSBIB
\Bibitem{Ore97}
\by O.~E.~Orel
\paper A criterion for orbital equivalence of integrable Hamiltonian systems in the~vicinity of elliptic orbits. An~orbital invariant in the~Lagrange problem
\jour Sb. Math.
\yr 1997
\vol 188
\issue 7
\pages 1085--1105
\mathnet{http://mi.mathnet.ru//eng/sm249}
\crossref{https://doi.org/10.1070/sm1997v188n07ABEH000249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474859}
\zmath{https://zbmath.org/?q=an:0896.70012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286460}
Linking options:
  • https://www.mathnet.ru/eng/sm249
  • https://doi.org/10.1070/sm1997v188n07ABEH000249
  • https://www.mathnet.ru/eng/sm/v188/i7/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024