Abstract:
The structure of limit sets of the solutions of systems of differential equations having the form dxdt=−∇U(x), x∈Rn, is studied. It is proved that any set of stationary points admissible for a general class of dynamical systems in Rn, can be such a limit set. Sufficient conditions for the stabilization of the solutions to a stationary one are obtained for systems close to systems of gradient type.
Bibliography: 8 titles.
\Bibitem{Fok81}
\by M.~V.~Fokin
\paper On limit sets of trajectories of dynamical systems of gradient type
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 4
\pages 447--458
\mathnet{http://mi.mathnet.ru/eng/sm2479}
\crossref{https://doi.org/10.1070/SM1983v044n04ABEH000977}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=665851}
\zmath{https://zbmath.org/?q=an:0555.34022|0498.34020}
Linking options:
https://www.mathnet.ru/eng/sm2479
https://doi.org/10.1070/SM1983v044n04ABEH000977
https://www.mathnet.ru/eng/sm/v158/i4/p502
This publication is cited in the following 6 articles:
Fernando Sanz Sánchez, Handbook of Geometry and Topology of Singularities V: Foliations, 2024, 335
V. V. Ivanov, “Cvobodnye po Puassonu dvizheniya i mnogomernye attraktory Vinograda”, Sib. elektron. matem. izv., 8 (2011), 123–126
Akramov, TA, “Mathematical foundations of modeling of catalytic processes: A review”, Theoretical Foundations of Chemical Engineering, 34:3 (2000), 263
Kapitanski L., Rodnianski I., “Shape and Morse Theory of Attractors”, Commun. Pure Appl. Math., 53:2 (2000), 218–242
T. A. Akramov, “On the behavior of solutions to a certain hyperbolic problem”, Sib Math J, 39:1 (1998), 1
M. P. Vishnevskii, “On the stabilization of solutions of weakly coupled cooperative parabolic systems”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 177–192