Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 2, Pages 279–292
DOI: https://doi.org/10.1070/SM1981v038n02ABEH001330
(Mi sm2455)
 

This article is cited in 16 scientific papers (total in 16 papers)

A point stabilization criterion for second order parabolic equations with almost periodic coefficients

V. V. Zhikov
References:
Abstract: We consider the Cauchy problem for the parabolic equation
$$ \frac{\partial u}{\partial t}-\frac\partial{\partial x_i}\biggl(a_{ij}(x,t)\frac\partial{\partial x_j}u\biggr)=0,\qquad u\big|_{t=0}(x)\in\mathscr L^\infty(\mathbf R^n), $$
with coefficients $a_{ij}(x_1,x_2,\dots,x_n,t)$ almost periodic on $\mathbf R^{n+1}$. We establish a necessary and sufficient condition on the initial function $u_0(x)$ under which the solution $u(t,x)$ is stabilized, i.e. $u(t, x)\to\lambda$ as $t\to\infty$. This condition consists in the existence of the mean value
$$ \lambda=\lim_{T\to\infty}T^{-n}\gamma^{-1}\int_{(\widehat A^{-1}x,x)\leqslant T^2}u_0(x)\,dx, $$
where $\widehat A = \{\widehat a_{ij}\}$ is the matrix of the coefficients of the “averaged” equation and $\gamma$ is the volume of the ellipsoid $(\widehat A^{-1}x,x)\leqslant1$.
Bibliography: 16 titles.
Received: 25.09.1978
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1979, Volume 110(152), Number 2(10), Pages 304–318
Bibliographic databases:
UDC: 517.946
MSC: 35K15, 35B40
Language: English
Original paper language: Russian
Citation: V. V. Zhikov, “A point stabilization criterion for second order parabolic equations with almost periodic coefficients”, Mat. Sb. (N.S.), 110(152):2(10) (1979), 304–318; Math. USSR-Sb., 38:2 (1981), 279–292
Citation in format AMSBIB
\Bibitem{Zhi79}
\by V.~V.~Zhikov
\paper A~point stabilization criterion for second order parabolic equations with almost periodic coefficients
\jour Mat. Sb. (N.S.)
\yr 1979
\vol 110(152)
\issue 2(10)
\pages 304--318
\mathnet{http://mi.mathnet.ru/sm2455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=552118}
\zmath{https://zbmath.org/?q=an:0462.35006|0444.35006}
\transl
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 2
\pages 279--292
\crossref{https://doi.org/10.1070/SM1981v038n02ABEH001330}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LG68600009}
Linking options:
  • https://www.mathnet.ru/eng/sm2455
  • https://doi.org/10.1070/SM1981v038n02ABEH001330
  • https://www.mathnet.ru/eng/sm/v152/i2/p304
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:447
    Russian version PDF:118
    English version PDF:22
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024