Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 7, Pages 1055–1069
DOI: https://doi.org/10.1070/sm1997v188n07ABEH000245
(Mi sm245)
 

The structure of infinitesimal symmetries of geodesic flows on a two-dimensional torus

N. V. Denisova

M. V. Lomonosov Moscow State University
References:
Abstract: The problem of geodesic lines on a two-dimensional torus is considered. One-parameter symmetry groups in the four-dimensional phase space that are generated by vector fields commuting with the initial Hamiltonian vector field are studied. As proved by Kozlov and Bolotin, a geodesic flow on a two-dimensional torus admitting a non-trivial infinitesimal symmetry of degree $n$ has a many-valued integral that is a polynomial of degree at most $n$ in the momentum variables. Kozlov and the present author proved earlier that first- and second-order infinitesimal symmetries are related to hidden cyclic coordinates and separated variables. In the present paper the structure of polynomial infinitesimal symmetries of degree at most four is described under the assumption that these symmetry fields are non-Hamiltonian.
Received: 24.10.1996
Bibliographic databases:
UDC: 517.9+531.01
MSC: Primary 70H33, 70H05; Secondary 58F17
Language: English
Original paper language: Russian
Citation: N. V. Denisova, “The structure of infinitesimal symmetries of geodesic flows on a two-dimensional torus”, Sb. Math., 188:7 (1997), 1055–1069
Citation in format AMSBIB
\Bibitem{Den97}
\by N.~V.~Denisova
\paper The structure of infinitesimal symmetries of geodesic flows on a~two-dimensional torus
\jour Sb. Math.
\yr 1997
\vol 188
\issue 7
\pages 1055--1069
\mathnet{http://mi.mathnet.ru//eng/sm245}
\crossref{https://doi.org/10.1070/sm1997v188n07ABEH000245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474857}
\zmath{https://zbmath.org/?q=an:0897.70012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031537018}
Linking options:
  • https://www.mathnet.ru/eng/sm245
  • https://doi.org/10.1070/sm1997v188n07ABEH000245
  • https://www.mathnet.ru/eng/sm/v188/i7/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024