Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 1, Pages 119–125
DOI: https://doi.org/10.1070/SM1981v038n01ABEH001207
(Mi sm2435)
 

This article is cited in 1 scientific paper (total in 2 paper)

Two theorems from the theory of periodic transformations

A. Yu. Volovikov
References:
Abstract: Let X be a connected paracompact Hausdorff space, freely acted on by a cyclic group of prime order p with generator T. Let f:XM be a continuous mapping of X into a topological manifold M of dimension m. Put A(f)={xXf(x)=f(Tx)==f(Tp1x)}. If M is orientable over Zp, ˇHi(X;Zp)=0 for 0<i<n, and f:ˇHm(M;Zp)ˇHm(X;Zp) has zero image, then, for X weakly locally contractible, dimA(f)nm(p1). If, in addition, X is an N-dimensional topological manifold, then dimA(f)Nm(p1). For p=2, suppose ˇH(X;Z2)=H(Sn;Z2) and dimX, while M is a connected compact closed manifold of dimension n with a free involution T. Let A(f)={xXf(Tx)=Tf(x)}, and suppose f:ˇHn(M;Z2)Hn(X;Z2) is a monomorphism. Then A(f).
Bibliography: 5 titles.
Received: 03.08.1978
Bibliographic databases:
UDC: 513.83
MSC: Primary 55M20, 55M35; Secondary 57N65
Language: English
Original paper language: Russian
Citation: A. Yu. Volovikov, “Two theorems from the theory of periodic transformations”, Math. USSR-Sb., 38:1 (1981), 119–125
Citation in format AMSBIB
\Bibitem{Vol79}
\by A.~Yu.~Volovikov
\paper Two theorems from the theory of periodic transformations
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 1
\pages 119--125
\mathnet{http://mi.mathnet.ru/eng/sm2435}
\crossref{https://doi.org/10.1070/SM1981v038n01ABEH001207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=548521}
\zmath{https://zbmath.org/?q=an:0449.55003|0416.55001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LB83400009}
Linking options:
  • https://www.mathnet.ru/eng/sm2435
  • https://doi.org/10.1070/SM1981v038n01ABEH001207
  • https://www.mathnet.ru/eng/sm/v152/i1/p128
  • This publication is cited in the following 2 articles:
    1. A. Yu. Volovikov, “On a topological generalization of the Tverberg theorem”, Math. Notes, 59:3 (1996), 324–326  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. Yu. Volovikov, “On the Bourgin–Yang theorem”, Russian Math. Surveys, 35:3 (1980), 196–200  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:257
    Russian version PDF:78
    English version PDF:25
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025