Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 38, Issue 1, Pages 119–125
DOI: https://doi.org/10.1070/SM1981v038n01ABEH001207
(Mi sm2435)
 

This article is cited in 1 scientific paper (total in 2 paper)

Two theorems from the theory of periodic transformations

A. Yu. Volovikov
References:
Abstract: Let $X$ be a connected paracompact Hausdorff space, freely acted on by a cyclic group of prime order $p$ with generator $T$. Let $f\colon X\to M$ be a continuous mapping of $X$ into a topological manifold $M$ of dimension $m$. Put $A(f)=\{x\in X\mid f(x)=f(Tx)=\dots=f(T^{p-1}x)\}$. If $M$ is orientable over $\mathbf Z_p$, $\check H^i(X;\mathbf Z_p)=0$ for $0<i<n$, and $f^*\colon\check H^m(M;\mathbf Z_p)\to\check H^m(X;\mathbf Z_p)$ has zero image, then, for $X$ weakly locally contractible, $\dim A(f)\geqslant n-m(p-1)$. If, in addition, $X$ is an $N$-dimensional topological manifold, then $\dim A(f)\geqslant N-m(p-1)$. For $p=2$, suppose $\check H^*(X;\mathbf Z_2)=H^*(S^n;\mathbf Z_2)$ and $\dim X\infty$, while $M$ is a connected compact closed manifold of dimension $n$ with a free involution $T'$. Let $A'(f)=\{x\in X \mid f(Tx)=T'f(x)\}$, and suppose $f^*\colon\check H^n(M;\mathbf Z_2)\to H^n(X;\mathbf Z_2)$ is a monomorphism. Then $A'(f)\ne\varnothing$.
Bibliography: 5 titles.
Received: 03.08.1978
Bibliographic databases:
UDC: 513.83
MSC: Primary 55M20, 55M35; Secondary 57N65
Language: English
Original paper language: Russian
Citation: A. Yu. Volovikov, “Two theorems from the theory of periodic transformations”, Math. USSR-Sb., 38:1 (1981), 119–125
Citation in format AMSBIB
\Bibitem{Vol79}
\by A.~Yu.~Volovikov
\paper Two theorems from the theory of periodic transformations
\jour Math. USSR-Sb.
\yr 1981
\vol 38
\issue 1
\pages 119--125
\mathnet{http://mi.mathnet.ru//eng/sm2435}
\crossref{https://doi.org/10.1070/SM1981v038n01ABEH001207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=548521}
\zmath{https://zbmath.org/?q=an:0449.55003|0416.55001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LB83400009}
Linking options:
  • https://www.mathnet.ru/eng/sm2435
  • https://doi.org/10.1070/SM1981v038n01ABEH001207
  • https://www.mathnet.ru/eng/sm/v152/i1/p128
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025