Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 8, Pages 1171–1182
DOI: https://doi.org/10.1070/sm1997v188n08ABEH000243
(Mi sm243)
 

This article is cited in 5 scientific papers (total in 6 papers)

Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space

P. A. Borodin

M. V. Lomonosov Moscow State University
References:
Abstract: For a subspace $Y$ of a Banach space $X$ the quasiorthogonal set $Q(Y,X)$ is the set of all $n\in X$ such that $0$ is one of the best approximation elements of $n$ in $Y$. The properties of the sets $Q(Y,X)$ are studied; several criteria in terms of these sets for $X$ to be a Hilbert space are established; in particular, generalizations of the well-known theorems of Rudin–Smith–Singer and Kakutani are proved.
Received: 25.07.1996
Bibliographic databases:
UDC: 517.982.22
MSC: 46B20, 46C05, 41A65
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space”, Sb. Math., 188:8 (1997), 1171–1182
Citation in format AMSBIB
\Bibitem{Bor97}
\by P.~A.~Borodin
\paper Quasiorthogonal sets and conditions for a~Banach space to be a~Hilbert space
\jour Sb. Math.
\yr 1997
\vol 188
\issue 8
\pages 1171--1182
\mathnet{http://mi.mathnet.ru//eng/sm243}
\crossref{https://doi.org/10.1070/sm1997v188n08ABEH000243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481395}
\zmath{https://zbmath.org/?q=an:0908.46016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286461}
Linking options:
  • https://www.mathnet.ru/eng/sm243
  • https://doi.org/10.1070/sm1997v188n08ABEH000243
  • https://www.mathnet.ru/eng/sm/v188/i8/p63
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:500
    Russian version PDF:240
    English version PDF:20
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024