Abstract:
In this paper the following theorem is proved.
Theorem. {\it For m>0 and all sufficiently large n, let the Padé approximants Rn,m of the series
f(z)=∞∑ν=0AνFν(z),Aν=(f,Fν)=∫1−1f(x)Fν(x)dα(x),
have exactly m finite poles, and let there exist a polynomial ωm(z)=∏mj=1(z−zj) such that
¯limn→∞‖qn,m−ωm‖1/n⩽δ<1.
Then
ρm(f)⩾1δmax
and in the region D_m(f)=D_{\rho_m} the function f has exactly m poles (at the points z_1,\dots,z_m).
}
Bibliography: 8 titles.
This publication is cited in the following 16 articles:
Methawee Wajasat, Nattapong Bosuwan, “Rate of pole detection using Padé approximants to polynomial expansions”, Demonstratio Mathematica, 58:1 (2025)
Bosuwan N., “On Row Sequences of Hermite-Pade Approximation and Its Generalizations”, Mathematics, 8:3 (2020)
Bosuwan N., “On the Boundedness of Poles of Generalized Pade Approximants”, Adv. Differ. Equ., 2019, 137
A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius-Padé approximants”, Sb. Math., 208:3 (2017), 313–334
N. Bosuwan, G. López Lagomasino, “Inverse Theorem on Row Sequences of Linear Padé-orthogonal Approximation”, Comput. Methods Funct. Theory, 2015
A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131
V. I. Buslaev, “Analog of the Hadamard Formula for the First Ellipse of Meromorphy”, Math. Notes, 85:4 (2009), 528–543
V. I. Buslaev, “An analogue of Fabry's theorem for generalized Padé approximants”, Sb. Math., 200:7 (2009), 981–1050
V. I. Buslaev, “On the Fabry Ratio Theorem for Orthogonal Series”, Proc. Steklov Inst. Math., 253 (2006), 8–21
D.Barrios Rolanı́a, G.López Lagomasino, E.B. Saff, “Determining radii of meromorphy via orthogonal polynomials on the unit circle”, Journal of Approximation Theory, 124:2 (2003), 263
S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141
D. Barrios Rolanı́a, G. López Lagomasino, E.B. Saff, “Asymptotics of orthogonal polynomials inside the unit circle and Szegő–Padé approximants”, Journal of Computational and Applied Mathematics, 133:1-2 (2001), 171
Lagomasino G. Vavilov V., “Survey on Recent Advances in Inverse Problems of Pade-Approximation Theory”, 1105, 1984, 11–26
A. A. Gonchar, “Poles of rows of the Padé table and meromorphic continuation of functions”, Math. USSR-Sb., 43:4 (1982), 527–546
Suetin S., “On Montessusdeballore Theorem for Non-Linear Pade Approximations of Orthogonal Expansions and Faber Series”, 253, no. 6, 1980, 1322–1325
V. V. Vavilov, G. L. Lopes, V. A. Prokhorov, “On an inverse problem for the rows of a Padé table”, Math. USSR-Sb., 38:1 (1981), 109–118