Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 37, Issue 4, Pages 581–597
DOI: https://doi.org/10.1070/SM1980v037n04ABEH002096
(Mi sm2413)
 

This article is cited in 16 scientific papers (total in 16 papers)

Inverse theorems on generalized Padé approximants

S. P. Suetin
References:
Abstract: In this paper the following theorem is proved.
Theorem. {\it For m>0 and all sufficiently large n, let the Padé approximants Rn,m of the series
f(z)=ν=0AνFν(z),Aν=(f,Fν)=11f(x)Fν(x)dα(x),
have exactly m finite poles, and let there exist a polynomial ωm(z)=mj=1(zzj) such that
¯limnqn,mωm1/nδ<1.
Then
ρm(f)1δmax
and in the region D_m(f)=D_{\rho_m} the function f has exactly m poles (at the points z_1,\dots,z_m). }
Bibliography: 8 titles.
Received: 20.10.1978
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30E10, 30D30
Language: English
Original paper language: Russian
Citation: S. P. Suetin, “Inverse theorems on generalized Padé approximants”, Math. USSR-Sb., 37:4 (1980), 581–597
Citation in format AMSBIB
\Bibitem{Sue79}
\by S.~P.~Suetin
\paper Inverse theorems on generalized Pad\'e approximants
\jour Math. USSR-Sb.
\yr 1980
\vol 37
\issue 4
\pages 581--597
\mathnet{http://mi.mathnet.ru/eng/sm2413}
\crossref{https://doi.org/10.1070/SM1980v037n04ABEH002096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=545057}
\zmath{https://zbmath.org/?q=an:0443.30048|0425.30034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LA35500006}
Linking options:
  • https://www.mathnet.ru/eng/sm2413
  • https://doi.org/10.1070/SM1980v037n04ABEH002096
  • https://www.mathnet.ru/eng/sm/v151/i4/p629
  • This publication is cited in the following 16 articles:
    1. Methawee Wajasat, Nattapong Bosuwan, “Rate of pole detection using Padé approximants to polynomial expansions”, Demonstratio Mathematica, 58:1 (2025)  crossref
    2. Bosuwan N., “On Row Sequences of Hermite-Pade Approximation and Its Generalizations”, Mathematics, 8:3 (2020)  crossref  isi
    3. Bosuwan N., “On the Boundedness of Poles of Generalized Pade Approximants”, Adv. Differ. Equ., 2019, 137  crossref  mathscinet  zmath  isi  scopus
    4. A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius-Padé approximants”, Sb. Math., 208:3 (2017), 313–334  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. N. Bosuwan, G. López Lagomasino, “Inverse Theorem on Row Sequences of Linear Padé-orthogonal Approximation”, Comput. Methods Funct. Theory, 2015  crossref  mathscinet
    6. A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. I. Buslaev, “Analog of the Hadamard Formula for the First Ellipse of Meromorphy”, Math. Notes, 85:4 (2009), 528–543  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. V. I. Buslaev, “An analogue of Fabry's theorem for generalized Padé approximants”, Sb. Math., 200:7 (2009), 981–1050  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. V. I. Buslaev, “On the Fabry Ratio Theorem for Orthogonal Series”, Proc. Steklov Inst. Math., 253 (2006), 8–21  mathnet  crossref  mathscinet  zmath  elib
    10. D.Barrios Rolanı́a, G.López Lagomasino, E.B. Saff, “Determining radii of meromorphy via orthogonal polynomials on the unit circle”, Journal of Approximation Theory, 124:2 (2003), 263  crossref  mathscinet  zmath
    11. S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. D. Barrios Rolanı́a, G. López Lagomasino, E.B. Saff, “Asymptotics of orthogonal polynomials inside the unit circle and Szegő–Padé approximants”, Journal of Computational and Applied Mathematics, 133:1-2 (2001), 171  crossref  mathscinet  zmath
    13. Lagomasino G. Vavilov V., “Survey on Recent Advances in Inverse Problems of Pade-Approximation Theory”, 1105, 1984, 11–26  mathscinet  zmath  isi
    14. A. A. Gonchar, “Poles of rows of the Padé table and meromorphic continuation of functions”, Math. USSR-Sb., 43:4 (1982), 527–546  mathnet  crossref  mathscinet  zmath
    15. Suetin S., “On Montessusdeballore Theorem for Non-Linear Pade Approximations of Orthogonal Expansions and Faber Series”, 253, no. 6, 1980, 1322–1325  mathscinet  zmath  isi
    16. V. V. Vavilov, G. L. Lopes, V. A. Prokhorov, “On an inverse problem for the rows of a Padé table”, Math. USSR-Sb., 38:1 (1981), 109–118  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:406
    Russian version PDF:106
    English version PDF:14
    References:62
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025