Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 7, Pages 973–995
DOI: https://doi.org/10.1070/sm1997v188n07ABEH000241
(Mi sm241)
 

This article is cited in 10 scientific papers (total in 10 papers)

Topology of spaces of probability measures

T. O. Banakh, T. N. Radul

Ivan Franko National University of L'viv
References:
Abstract: We study the space $\widehat P(X)$ of Radon probability measures on a metric space $X$ and its subspaces $P_c(X)$, $P_d(X)$ and $P_\omega (X)$ of continuous measures, discrete measures, and finitely supported measures, respectively. It is proved that for any completely metrizable space $X$, the space $\widehat P(X)$ is homeomorphic to a Hilbert space. A topological classification is obtained for the pairs $(\widehat P(K),\widehat P(X))$, $(\widehat P(K),P_d(Y))$ and $(\widehat P(K),P_c(Z))$, where $K$ is a metric compactum, $X$ an everywhere dense Borel subset of $K$, $Y$ an everywhere dense $F_{\sigma \delta }$-set of $K$, and $Z$ an everywhere uncountable everywhere dense Borel subset of $K$ of sufficiently high Borel class. Conditions on the pair $(X,Y)$ are found that are necessary and sufficient for the pair $(\widehat P(X),P_\omega (Y))$ to be homeomorphic to $(l^2(A),l^2_f(A))$.
Received: 30.10.1995
Bibliographic databases:
UDC: 515.12
Language: English
Original paper language: Russian
Citation: T. O. Banakh, T. N. Radul, “Topology of spaces of probability measures”, Sb. Math., 188:7 (1997), 973–995
Citation in format AMSBIB
\Bibitem{BanRad97}
\by T.~O.~Banakh, T.~N.~Radul
\paper Topology of spaces of probability measures
\jour Sb. Math.
\yr 1997
\vol 188
\issue 7
\pages 973--995
\mathnet{http://mi.mathnet.ru//eng/sm241}
\crossref{https://doi.org/10.1070/sm1997v188n07ABEH000241}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474854}
\zmath{https://zbmath.org/?q=an:0893.28004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286449}
Linking options:
  • https://www.mathnet.ru/eng/sm241
  • https://doi.org/10.1070/sm1997v188n07ABEH000241
  • https://www.mathnet.ru/eng/sm/v188/i7/p23
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:829
    Russian version PDF:477
    English version PDF:79
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024