Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 3, Pages 427–441
DOI: https://doi.org/10.1070/SM1982v043n03ABEH002573
(Mi sm2408)
 

A scattering problem in laminar media

A. L. Piatnitski
References:
Abstract: The scattering problem in a laminar medium
$$ \Delta u(x)+k^2q(x_1,\dots,x_n,x_1/\varepsilon)u(x)=0 $$
with a radiation condition at infinity is considered. The potential $q(x,y)$ is periodic in the variable $y$. Here $k$ is a large parameter, and $\varepsilon$ is a small parameter with $k\sim\varepsilon^{-\alpha}$, $\alpha>1$.
In this paper a formal asymptotic expansion of the solution of this problem is found. To construct it an operator analogous to the canonical Maslov operator is used which acts on a certain Lagrangian manifold not depending on $\varepsilon$. An analogous problem for the Schrödinger equation in a laminar medium is solved.
Bibliography: 10 titles.
Received: 22.05.1979
Bibliographic databases:
UDC: 517.9
MSC: Primary 35P25, 35C10; Secondary 35J05
Language: English
Original paper language: Russian
Citation: A. L. Piatnitski, “A scattering problem in laminar media”, Math. USSR-Sb., 43:3 (1982), 427–441
Citation in format AMSBIB
\Bibitem{Pia81}
\by A.~L.~Piatnitski
\paper A~scattering problem in laminar media
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 3
\pages 427--441
\mathnet{http://mi.mathnet.ru//eng/sm2408}
\crossref{https://doi.org/10.1070/SM1982v043n03ABEH002573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=628222}
\zmath{https://zbmath.org/?q=an:0501.35069|0468.35071}
Linking options:
  • https://www.mathnet.ru/eng/sm2408
  • https://doi.org/10.1070/SM1982v043n03ABEH002573
  • https://www.mathnet.ru/eng/sm/v157/i3/p478
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024