Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 43, Issue 3, Pages 323–345
DOI: https://doi.org/10.1070/SM1982v043n03ABEH002451
(Mi sm2402)
 

This article is cited in 3 scientific papers (total in 3 papers)

Boundary properties of analytic solutions of differential equations of infinite order

Yu. F. Korobeinik
References:
Abstract: Let $\mathscr L(\lambda)$ be an entire function from the class $[1,0]$ with simple zeros $\{\lambda_n\}$ and let $\mathscr G$ be a bounded convex domain. In this paper particular solutions of the equation
\begin{equation} (\mathscr L(D))(z)=f(z),\qquad z\in\mathscr G, \tag{\text{I}} \end{equation}
are constructed which are analytic in $\mathscr G$ and possess a definite smoothness on the boundary of $\mathscr G$, for the case in which $f$ is analytic in $\mathscr G$ and sufficiently smooth on the boundary. In particular, it is shown that if $\mathscr L(\lambda)$ is an entire function of completely regular growth with proximate order $\rho(r)$, $\rho(r)\to\rho$, $0<\rho<1$, with a positive indicator and a regular set of roots, then for an arbitrary function $f$, analytic in $\mathscr G$ and continuous on $\overline{\mathscr G}$, equation (I) has an effectively defined particular solution analytic in $\mathscr G$ and infinitely differentiable at each boundary point of $\mathscr G$.
Bibliography: 14 titles.
Received: 11.09.1980
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1981, Volume 115(157), Number 3(7), Pages 364–390
Bibliographic databases:
UDC: 517.9
MSC: Primary 34A35, 34B05; Secondary 30D15
Language: English
Original paper language: Russian
Citation: Yu. F. Korobeinik, “Boundary properties of analytic solutions of differential equations of infinite order”, Mat. Sb. (N.S.), 115(157):3(7) (1981), 364–390; Math. USSR-Sb., 43:3 (1982), 323–345
Citation in format AMSBIB
\Bibitem{Kor81}
\by Yu.~F.~Korobeinik
\paper Boundary properties of analytic solutions of differential equations of infinite order
\jour Mat. Sb. (N.S.)
\yr 1981
\vol 115(157)
\issue 3(7)
\pages 364--390
\mathnet{http://mi.mathnet.ru/sm2402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=628216}
\zmath{https://zbmath.org/?q=an:0492.34010|0475.34007}
\transl
\jour Math. USSR-Sb.
\yr 1982
\vol 43
\issue 3
\pages 323--345
\crossref{https://doi.org/10.1070/SM1982v043n03ABEH002451}
Linking options:
  • https://www.mathnet.ru/eng/sm2402
  • https://doi.org/10.1070/SM1982v043n03ABEH002451
  • https://www.mathnet.ru/eng/sm/v157/i3/p364
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:385
    Russian version PDF:120
    English version PDF:14
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024