Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 8, Pages 1153–1170
DOI: https://doi.org/10.1070/SM1997v188n08ABEH000240
(Mi sm240)
 

This article is cited in 4 scientific papers (total in 4 papers)

Divergence everywhere of the Fourier series of continuous functions of several variables

A. N. Bakhvalov

M. V. Lomonosov Moscow State University
References:
Abstract: The Fourier series of a function $f$ of $n$ real variables is said to be $\lambda$-convergent at a point $\vec x$ for $\lambda \geqslant 1$ if there exists the limit
$$ \lim _{\min \limits _kM_k\to +\infty}S_{\vec M}(\vec x,f) $$
over all indices $\vec M=(M_1,\dots ,M_n)$ such that $1/\lambda \leqslant M_k/M_j\leqslant \lambda$ for all $k$ and $j$. An example of a continuous function of $2m$ variables with modulus of continuity
$$ \omega (F,\delta )=\underset {\delta\to +0}O\Bigl (\ln ^{-m}\frac 1\delta \Bigr) $$
is constructed such that the Fourier series of $F$ with respect to the trigonometric system $\lambda$-diverges everywhere for an arbitrary fixed $\lambda >1$.
Received: 14.11.1996
Bibliographic databases:
UDC: 517.51
MSC: 42B05, 42B08
Language: English
Original paper language: Russian
Citation: A. N. Bakhvalov, “Divergence everywhere of the Fourier series of continuous functions of several variables”, Sb. Math., 188:8 (1997), 1153–1170
Citation in format AMSBIB
\Bibitem{Bak97}
\by A.~N.~Bakhvalov
\paper Divergence everywhere of the~Fourier series of continuous functions of several variables
\jour Sb. Math.
\yr 1997
\vol 188
\issue 8
\pages 1153--1170
\mathnet{http://mi.mathnet.ru//eng/sm240}
\crossref{https://doi.org/10.1070/SM1997v188n08ABEH000240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481394}
\zmath{https://zbmath.org/?q=an:0891.42004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286458}
Linking options:
  • https://www.mathnet.ru/eng/sm240
  • https://doi.org/10.1070/SM1997v188n08ABEH000240
  • https://www.mathnet.ru/eng/sm/v188/i8/p45
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:476
    Russian version PDF:226
    English version PDF:37
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024