Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 37, Issue 3, Pages 425–440
DOI: https://doi.org/10.1070/SM1980v037n03ABEH001968
(Mi sm2396)
 

This article is cited in 1 scientific paper (total in 1 paper)

Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$

I. D. Suprunenko
References:
Abstract: In this paper we prove the following theorem.
Theorem. Suppose that $p>3n/2+1$ for $n<8$ and $p>2n-5$ for $n\geqslant8$, and $G$ is a subgroup of $GL(V_n)$ containing $\varphi_n(SL(2,p))$. Then one of the following assertions is true:
$1)$ $G\subset P^*\varphi_n(GL(2,p))$;
$2)$ $G\supset SL(n,p)$;
$3)$ $n$ is even and $Sp(n,p)\subset G\subset HSp(n,p)$;
$4)$ $n$ is odd and $\Omega(n,p)\subset G\subset P^*O(n,p)$;
$5)$ $n=7$ and $G=G_2(p)Z(G)$.
Here $P^*$ is the multiplicative group of the field $P$, $Sp(n,p)$ is the symplectic group, $HSp(n,p)$ is the group of symplectic similarities, $\Omega(n,p)$ is the derived group of the orthogonal group, $G_2(p)$ is the Chevalley group over $P$ associated with the Lie algebra of type $G_2$, and $Z(G)$ is the center of $G$.

Bibliography: 16 titles.
Received: 01.02.1978
Bibliographic databases:
UDC: 519.4
MSC: 20G40, 20G05
Language: English
Original paper language: Russian
Citation: I. D. Suprunenko, “Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree $n$”, Math. USSR-Sb., 37:3 (1980), 425–440
Citation in format AMSBIB
\Bibitem{Sup79}
\by I.~D.~Suprunenko
\paper Subgroups of $G(n,p)$ containing $SL(2,p)$ in an irreducible representation of degree~$n$
\jour Math. USSR-Sb.
\yr 1980
\vol 37
\issue 3
\pages 425--440
\mathnet{http://mi.mathnet.ru//eng/sm2396}
\crossref{https://doi.org/10.1070/SM1980v037n03ABEH001968}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=542813}
\zmath{https://zbmath.org/?q=an:0444.20042|0416.20047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KT31500010}
Linking options:
  • https://www.mathnet.ru/eng/sm2396
  • https://doi.org/10.1070/SM1980v037n03ABEH001968
  • https://www.mathnet.ru/eng/sm/v151/i3/p453
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024