Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 7, Pages 955–972
DOI: https://doi.org/10.1070/sm1997v188n07ABEH000239
(Mi sm239)
 

This article is cited in 4 scientific papers (total in 4 papers)

On continuity of geodesic frameworks of flows on surfaces

S. Kh. Aranson, E. V. Zhuzhoma, V. S. Medvedev
References:
Abstract: For flows on an orientable closed surface $M_g$ of larger genus (that is, of genus $g\geqslant 2$) a special geodesic distribution (the geodesic framework of the flow) is constructed that consists of geodesics with the same asymptotic directions as the trajectories of the flow and that is a complete topological invariant of the irrational flows on such surfaces. The problem of the dependence of the geodesic framework on a perturbation of the flow (or on the parameter of a family of flows) is considered. It is shown that an irreducible elementary irrational geodesic framework of a flow depends continuously on the perturbation of the flow (which is analogous to the continuous dependence of an irrational Poincare rotation number on a perturbation of a flow).
Received: 27.10.1996
Bibliographic databases:
UDC: 517.917+513.9
MSC: Primary 58F25; Secondary 58F10, 34C35, 34C28, 34D30, 54H20, 53A05
Language: English
Original paper language: Russian
Citation: S. Kh. Aranson, E. V. Zhuzhoma, V. S. Medvedev, “On continuity of geodesic frameworks of flows on surfaces”, Sb. Math., 188:7 (1997), 955–972
Citation in format AMSBIB
\Bibitem{AraZhuMed97}
\by S.~Kh.~Aranson, E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper On continuity of geodesic frameworks of flows on surfaces
\jour Sb. Math.
\yr 1997
\vol 188
\issue 7
\pages 955--972
\mathnet{http://mi.mathnet.ru//eng/sm239}
\crossref{https://doi.org/10.1070/sm1997v188n07ABEH000239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474853}
\zmath{https://zbmath.org/?q=an:0931.37012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YJ74900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286459}
Linking options:
  • https://www.mathnet.ru/eng/sm239
  • https://doi.org/10.1070/sm1997v188n07ABEH000239
  • https://www.mathnet.ru/eng/sm/v188/i7/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:391
    Russian version PDF:194
    English version PDF:22
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024