Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 42, Issue 4, Pages 499–514
DOI: https://doi.org/10.1070/SM1982v042n04ABEH002388
(Mi sm2352)
 

This article is cited in 5 scientific papers (total in 5 papers)

Some conditions for embeddability of an $FC$-group in a direct product of finite groups and a torsionfree Abelian group

L. A. Kurdachenko
References:
Abstract: By definition, a torsionfree Abelian group $A$ belongs to the class $A(SD\mathfrak F)$ if every $FC$-group $G$ with $t(G)\in SD\mathfrak F$ and $G/t(G)\cong A$ is embeddable in a direct product of finite groups and a torsionfree Abelian group.
If $A$ is a torsionfree Abelian group of rank 1, then $\operatorname{Sp}(A)=\{q, q\text{ a prime}\mid A=A^q\}$.
The fundamental result of the article is the following statement.
Theorem. {\it A torsionfree Abelian group $A$ belongs to the class $A(SD\mathfrak F)$ if and only if it admits a series of pure subgroups
$$ (1)=A_1\leqslant A_2\leqslant\cdots\leqslant A_n\cdots\leqslant\bigcup_{n\in\mathbf N}A_n=A $$
with the following properties}:
(I) {\it the quotient $A_{n+1}/A_n$ is of rank $1,$ and the set $\operatorname{Sp}(A_{n+1}/A_n)$ is finite$,$ $n\in\mathbf N;$}
(II) {\it for every prime $q$, there exists a number $l(q)$ such that $q\in\operatorname{Sp}(A_{n+1}/A_n)$ whenever $n\geqslant l(q)$.}
Bibliography: 9 titles.
Received: 10.12.1979
Bibliographic databases:
UDC: 519.41/47
MSC: 20F24, 20K15
Language: English
Original paper language: Russian
Citation: L. A. Kurdachenko, “Some conditions for embeddability of an $FC$-group in a direct product of finite groups and a torsionfree Abelian group”, Math. USSR-Sb., 42:4 (1982), 499–514
Citation in format AMSBIB
\Bibitem{Kur81}
\by L.~A.~Kurdachenko
\paper Some conditions for embeddability of an $FC$-group in a~direct product of finite groups and a~torsionfree Abelian group
\jour Math. USSR-Sb.
\yr 1982
\vol 42
\issue 4
\pages 499--514
\mathnet{http://mi.mathnet.ru//eng/sm2352}
\crossref{https://doi.org/10.1070/SM1982v042n04ABEH002388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=615341}
\zmath{https://zbmath.org/?q=an:0484.20016|0465.20034}
Linking options:
  • https://www.mathnet.ru/eng/sm2352
  • https://doi.org/10.1070/SM1982v042n04ABEH002388
  • https://www.mathnet.ru/eng/sm/v156/i4/p566
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:330
    Russian version PDF:84
    English version PDF:21
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024