Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 6, Pages 887–907
DOI: https://doi.org/10.1070/SM2007v198n06ABEH003865
(Mi sm2345)
 

This article is cited in 6 scientific papers (total in 6 papers)

Calculation of the variance in a problem in the theory of continued fractions

A. V. Ustinov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: We study the random variable $N(\alpha,R)=\#\{j\geqslant1:Q_j(\alpha)\leqslant R\}$, where $\alpha\in[0;1)$ and $P_j(\alpha)/Q_j(\alpha)$ is the $j$th convergent of the continued fraction expansion of the number $\alpha=[0;t_1,t_2,\dots]$. For the mean value
$$ N(R)=\int_0^1N(\alpha,R)\,d\alpha $$
and variance
$$ D(R)=\int_0^1\bigl(N(\alpha,R)-N(R)\bigr)^2\,d\alpha $$
of the random variable $N(\alpha,R)$, we prove the asymptotic formulae with two significant terms
$$ N(R)=N_1\log R+N_0+O(R^{-1+\varepsilon}), \quad D(R)=D_1\log R+D_0+O(R^{-1/3+\varepsilon}). $$

Bibliography: 13 titles.
Received: 01.08.2006
Bibliographic databases:
UDC: 511.336
MSC: Primary 11K50; Secondary 11A55
Language: English
Original paper language: Russian
Citation: A. V. Ustinov, “Calculation of the variance in a problem in the theory of continued fractions”, Sb. Math., 198:6 (2007), 887–907
Citation in format AMSBIB
\Bibitem{Ust07}
\by A.~V.~Ustinov
\paper Calculation of the variance in a~problem in the theory of continued fractions
\jour Sb. Math.
\yr 2007
\vol 198
\issue 6
\pages 887--907
\mathnet{http://mi.mathnet.ru//eng/sm2345}
\crossref{https://doi.org/10.1070/SM2007v198n06ABEH003865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355368}
\zmath{https://zbmath.org/?q=an:1197.11096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249041900015}
\elib{https://elibrary.ru/item.asp?id=9512222}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548551487}
Linking options:
  • https://www.mathnet.ru/eng/sm2345
  • https://doi.org/10.1070/SM2007v198n06ABEH003865
  • https://www.mathnet.ru/eng/sm/v198/i6/p139
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:724
    Russian version PDF:211
    English version PDF:14
    References:65
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024