Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1982, Volume 42, Issue 4, Pages 427–450
DOI: https://doi.org/10.1070/SM1982v042n04ABEH002264
(Mi sm2342)
 

This article is cited in 14 scientific papers (total in 14 papers)

On differentiability properties of the symbol of a multidimensional singular integral operator

A. D. Gadzhiev
References:
Abstract: Let $f$ be the characteristic and $\Phi$ the symbol of $n$-dimensional singular integral operator, let $\delta$ be the Beltrami operator on the sphere $S^{n-1}$ of the space $\mathbf R^n$, and let $H^l_p(S^{n-1})$ be the space of Bessel potentials on this sphere with norm
$$ \|g\|_{H^l_p(S^{n-1})}=\|(E+\delta)^{l/2}g\|_{L_p(S^{n-1})}, $$
where $E$ is the identity operator.
The differentiability properties of the symbol in the spaces $H^l_p(S^{n-1})$ were studied earlier in the case $p=2$.
In this paper it is proved that in the case $p\in(1, \infty)$, $p\ne2$, the following assertions hold:
a) If $f\in L_p(S^{n-1})$, then $\Phi\in H^\alpha_p(S^{n-1})$, $\alpha<\frac n2-|\frac 1p-\frac 12|(n-2)$, while this assertion fails to hold for any $\alpha>\frac n2-|\frac 1p-\frac 12|(n-2)$.
b) If $\Phi\in H^\nu_p(S^{n-1})$, where $\nu>\frac n2+|\frac 1p-\frac 12|(n-2)$, then $f\in L_p(S^{n-1})$, while this assertion fails to hold for any $\nu<\frac n2+|\frac 1p-\frac 12|(n-2)$.
From these results it follows that for the range $R(\Phi)$ of the symbol $\Phi$ with characteristic $f\in L_p(S^{n-1})$ the inclusions $H^\nu_p\subset R(\Phi)\subset H^\alpha_p$ hold, and, in contrast to the case $p=2$, a more precise description of $R(\Phi)$ in terms of the spaces $H^l_p(S^{n-1})$ is not possible.
Bibliography: 21 titles.
Received: 12.05.1980
Bibliographic databases:
UDC: 517.518.13
MSC: Primary 45E10, 47G05; Secondary 35S99
Language: English
Original paper language: Russian
Citation: A. D. Gadzhiev, “On differentiability properties of the symbol of a multidimensional singular integral operator”, Math. USSR-Sb., 42:4 (1982), 427–450
Citation in format AMSBIB
\Bibitem{Gad81}
\by A.~D.~Gadzhiev
\paper On differentiability properties of the symbol of a~multidimensional singular integral operator
\jour Math. USSR-Sb.
\yr 1982
\vol 42
\issue 4
\pages 427--450
\mathnet{http://mi.mathnet.ru//eng/sm2342}
\crossref{https://doi.org/10.1070/SM1982v042n04ABEH002264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=615338}
\zmath{https://zbmath.org/?q=an:0509.47043|0479.47046}
Linking options:
  • https://www.mathnet.ru/eng/sm2342
  • https://doi.org/10.1070/SM1982v042n04ABEH002264
  • https://www.mathnet.ru/eng/sm/v156/i4/p483
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:349
    Russian version PDF:110
    English version PDF:23
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024