Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 50, Issue 2, Pages 439–456
DOI: https://doi.org/10.1070/SM1985v050n02ABEH002838
(Mi sm2306)
 

This article is cited in 1 scientific paper (total in 1 paper)

Representing systems of exponential functions in polycylindrical domains

Le Khaĭ Khoĭ, Yu. F. Korobeinik
References:
Abstract: The main result in this article is the following.
Theorem. {\it Let $D_p$ $(1\leqslant p\leqslant m)$ be a bounded convex domain in the $z_p$-plane with support function $h_p(-\varphi),$ and let $\Lambda_p\overset{\mathrm{df}}=\{\lambda_k^{(p)}\}_{k=1}^\infty$ be zeros $($not necessarily simple$)$ of an exponential function $\mathscr L_p(\lambda)$ with indicator $h_p(\varphi)$ $($the function $\mathscr L_p(\lambda)$ may also have other zeros besides $\{\lambda_k^{(p)}\}_{k=1}^\infty,$ and$,$ moreover$,$ of arbitrary multiplicity$).$ Assume that $\mathscr E_{\Lambda_p}\overset{\mathrm{df}}=\{e^{\lambda_k^{(p)}z_p}\}_{k=1}^\infty$ is an absolutely representing system in $\mathscr H(D_p),$ $p=1,2,\dots,m$. Then
$$ \mathscr E_{\Lambda}\overset{\mathrm{df}}=\big\{e^{\lambda_{k_1}^{(1)}z_1+\dots+\lambda_{k_m}^{(m)}z_m}\big\}_{k_1,\dots,k_m=1}^\infty $$
is an absolutely representing system in $\mathscr H(D),$ where $D=D_1\times D_2\times\dots\times D_m$ and $\mathscr H(G)$ is the space of holomorphic functions in a domain $G,$ with the topology of uniform convergence on compact subsets of $G$.}
The properties of nontrivial expansions of zero in $\mathscr H(D)$ with respect to a system $\mathscr E_\Lambda$ are also studied. In particular, it is proved that if $D_p$, $\Lambda_p$, and $\mathscr L_p(\lambda)$ are the same as in the statement of the theorem, then $\mathscr E_\Lambda$ is an absolutely representing system in $\mathscr H(D)$ if and only if $\mathscr H(D)$ has a nontrivial expansion of zero with respect to the system $\mathscr E_\Lambda$.
Bibliography: 9 titles.
Received: 20.05.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 122(164), Number 4(12), Pages 458–474
Bibliographic databases:
UDC: 517.9
MSC: Primary 30C15, 30D10, 32A05; Secondary 30B50, 30D15
Language: English
Original paper language: Russian
Citation: Le Khaǐ Khoǐ, Yu. F. Korobeinik, “Representing systems of exponential functions in polycylindrical domains”, Mat. Sb. (N.S.), 122(164):4(12) (1983), 458–474; Math. USSR-Sb., 50:2 (1985), 439–456
Citation in format AMSBIB
\Bibitem{Le Kor83}
\by Le Kha{\v\i} Kho{\v\i}, Yu.~F.~Korobeinik
\paper Representing systems of exponential functions in polycylindrical domains
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 122(164)
\issue 4(12)
\pages 458--474
\mathnet{http://mi.mathnet.ru/sm2306}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=725452}
\zmath{https://zbmath.org/?q=an:0555.32003}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 2
\pages 439--456
\crossref{https://doi.org/10.1070/SM1985v050n02ABEH002838}
Linking options:
  • https://www.mathnet.ru/eng/sm2306
  • https://doi.org/10.1070/SM1985v050n02ABEH002838
  • https://www.mathnet.ru/eng/sm/v164/i4/p458
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:85
    English version PDF:8
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024