Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 5, Pages 657–669
DOI: https://doi.org/10.1070/sm1997v188n05ABEH000224
(Mi sm224)
 

This article is cited in 22 scientific papers (total in 22 papers)

Structure of the spectrum of the Schrodinger operator with magnetic field in a strip and infinite-gap potentials

V. A. Geiler, M. M. Senatorov

Mordovian State University
References:
Abstract: The Sturm–Liouville operator $H=-d^2/dx^2+V(x+p)$ on an interval $[a,b]$ with zero boundary conditions is considered; here $V$ is a strictly convex function of class $C^2$ on the real line $\mathbb R$ and $p$ is a numerical parameter. The dependence of the eigenvalues of $H$ on $p$ is studied. The spectral analysis of the Schrödinger operator with magnetic field in a strip with Dirichlet boundary conditions on the boundary of the strip reduces to this problem. As a consequence of the main result the following theorem is obtained. Let $V_1$ be the restriction of $V$ to the interval $[a,b)$ and let $u$ be the periodic extension of $V_1$ on the entire axis (with period $b-a$). Then all the gaps in the spectrum of the Schrödinger operator $-d^2/dx^2+u(x)$ are non-trivial.
Received: 22.04.1996
Bibliographic databases:
UDC: 517.983
MSC: 35P20, 35Q55
Language: English
Original paper language: Russian
Citation: V. A. Geiler, M. M. Senatorov, “Structure of the spectrum of the Schrodinger operator with magnetic field in a strip and infinite-gap potentials”, Sb. Math., 188:5 (1997), 657–669
Citation in format AMSBIB
\Bibitem{GeiSen97}
\by V.~A.~Geiler, M.~M.~Senatorov
\paper Structure of the~spectrum of the~Schrodinger operator with magnetic field in a~strip and infinite-gap potentials
\jour Sb. Math.
\yr 1997
\vol 188
\issue 5
\pages 657--669
\mathnet{http://mi.mathnet.ru//eng/sm224}
\crossref{https://doi.org/10.1070/sm1997v188n05ABEH000224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478628}
\zmath{https://zbmath.org/?q=an:0901.34077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YD90100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031521424}
Linking options:
  • https://www.mathnet.ru/eng/sm224
  • https://doi.org/10.1070/sm1997v188n05ABEH000224
  • https://www.mathnet.ru/eng/sm/v188/i5/p21
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:580
    Russian version PDF:234
    English version PDF:26
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024