Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 45, Issue 4, Pages 487–506
DOI: https://doi.org/10.1070/SM1983v045n04ABEH001021
(Mi sm2231)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium

Yu. N. Protas
References:
Abstract: Let $[\Delta+k^2q(x)]\psi(x,k)=0$, where $x\in\mathbf R^n$, $q(x)\in C^\infty$, $q(x)>0$, $q(x)\equiv1$ for $r=|x|>a$, and $\psi(x,k)=e^{ikx_n}+u(x,k)$, in which the function $u$ satisfies the radiation conditions
$$ u(x,k)=f(\omega,k)r^{(1-n)/2}e^{ikr}(1+O(r^{-1})),\qquad r\to\infty,\quad\omega=\frac x{r}. $$
The asymptotics of the scattering amplitude $f(\omega,k)$ for $\omega\in S^{n-1}$ is obtained as $k\to+\infty$. It can be represented in the form of a sum of two canonical operators of V. P. Maslov, constructed from the $(n-1)$-dimensional Lagrangian manifolds $L_0$, $L_+\subset T^*S^{n-1}$.
Let $\Lambda^n$ be the $n$-dimensional Lagrangian manifold comprised of the bicharacteristics corresponding to the problem under consideration, and let $s$ be a parameter along the bicharacteristics. The manifold $L_+$ can be obtained from $\Lambda^n$ by passing to spherical coordinates in $\mathbf R^{2n}_{x,p}$ projecting $\Lambda^n$ on to $T^*S^{n-1}$ and letting s go to infinity. The manifold $L_0$ coincides with $L_+$ for $q\equiv1$.
Bibliography: 5 titles
Received: 14.04.1981
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1982, Volume 117(159), Number 4, Pages 494–515
Bibliographic databases:
UDC: 517.944
MSC: 35J05, 35P25
Language: English
Original paper language: Russian
Citation: Yu. N. Protas, “Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium”, Mat. Sb. (N.S.), 117(159):4 (1982), 494–515; Math. USSR-Sb., 45:4 (1983), 487–506
Citation in format AMSBIB
\Bibitem{Pro82}
\by Yu.~N.~Protas
\paper Quasiclassical asymptotics of the scattering amplitude for the scattering of a~plane wave by inhomogeneities of the medium
\jour Mat. Sb. (N.S.)
\yr 1982
\vol 117(159)
\issue 4
\pages 494--515
\mathnet{http://mi.mathnet.ru/sm2231}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=651141}
\zmath{https://zbmath.org/?q=an:0549.35101|0508.35065}
\transl
\jour Math. USSR-Sb.
\yr 1983
\vol 45
\issue 4
\pages 487--506
\crossref{https://doi.org/10.1070/SM1983v045n04ABEH001021}
Linking options:
  • https://www.mathnet.ru/eng/sm2231
  • https://doi.org/10.1070/SM1983v045n04ABEH001021
  • https://www.mathnet.ru/eng/sm/v159/i4/p494
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:392
    Russian version PDF:103
    English version PDF:19
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024