Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 4, Pages 621–638
DOI: https://doi.org/10.1070/sm1997v188n04ABEH000221
(Mi sm221)
 

This article is cited in 16 scientific papers (total in 16 papers)

Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series

R. M. Trigub

Donetsk National University
References:
Abstract: For $p\in (0,1]$ conditions on a number sequence $\{\lambda _k\}_0^\infty$ are indicated ensuring that the multiplier operator $\sum _{k=0}^\infty c_k z^k \mapsto \sum _{k=0}^\infty \lambda _k c_k z^k$ is continuous in the Hardy space $H_p(D)$ (here $D$ can also be a polydisc $D^m$). Some sufficient conditions are also established. These results are used to find out the precise order of approximation of multiple power series by Bochner–Riesz means and to evaluate the $K$-functional for a pair of spaces related to the polyharmonic operator.
Received: 10.02.1994 and 30.05.1995
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A45, 32A35; Secondary 46B70
Language: English
Original paper language: Russian
Citation: R. M. Trigub, “Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series”, Sb. Math., 188:4 (1997), 621–638
Citation in format AMSBIB
\Bibitem{Tri97}
\by R.~M.~Trigub
\paper Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series
\jour Sb. Math.
\yr 1997
\vol 188
\issue 4
\pages 621--638
\mathnet{http://mi.mathnet.ru//eng/sm221}
\crossref{https://doi.org/10.1070/sm1997v188n04ABEH000221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1462032}
\zmath{https://zbmath.org/?q=an:0896.42003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XP47500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031521399}
Linking options:
  • https://www.mathnet.ru/eng/sm221
  • https://doi.org/10.1070/sm1997v188n04ABEH000221
  • https://www.mathnet.ru/eng/sm/v188/i4/p145
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:727
    Russian version PDF:306
    English version PDF:38
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024