Abstract:
The behavior near the boundary of generalized solutions of a second order elliptic equation
n∑i,j=1∂∂xi(aij(x)∂u∂xj)=f,x∈Q={|x|<1}⊂Rn.
in W1p(Q), p>1, is studied.
It is shown that under a certain condition on the right side of the equation, the boundedness of the function ‖x‖Lp(‖x‖=r), 12⩽, is necessary and sufficient for the existence of a limit for the solution u(rw), \frac12\leqslant r<1, |w|=1, in L_p(\|w\|=1) as r\to1-0. Moreover, the summability of the function
(1-|x|)|u(x)|^{p-2}|\nabla u(x)|^2 is also a necessary and sufficient condition for the existence of a limit in L_p on the boundary.
Bibliography: 10 titles.
\Bibitem{GusMik79}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/sm2193}
\crossref{https://doi.org/10.1070/SM1980v036n01ABEH001751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=524209}
\zmath{https://zbmath.org/?q=an:0453.35035|0434.35032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22400001}
Linking options:
https://www.mathnet.ru/eng/sm2193
https://doi.org/10.1070/SM1980v036n01ABEH001751
https://www.mathnet.ru/eng/sm/v150/i1/p3
This publication is cited in the following 35 articles:
T. V. Kapitsyna, “The Space $H_p$ of Solutions of Degenerate Parabolic Equations”, Math Notes, 114:5-6 (2023), 797
A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752
A. K. Gushchin, “On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65
A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64
Petrushko I.M., Petrushko M.I., “On the First Mixed Problem in l-P, P > 1, For the Degenerating on the Boundary Parabolic Equations of Second Order”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 040006
Petrushko I.M., “On Boundary and Initial Values of Solutions of a Second-Order Parabolic Equation That Degenerate on the Domain Boundary”, Dokl. Math., 96:3 (2017), 568–570
S. I. Bezrodnykh, V. I. Vlasov, “Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition”, Comput. Math. Math. Phys., 54:4 (2014), 631–695
V. P. Mikhailov, “O suschestvovanii granichnykh znachenii u reshenii ellipticheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 97–105
A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219
A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27
A. K. Guschin, “Otsenki resheniya zadachi Dirikhle s granichnoi funktsiei iz $L_p$”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 53–67
Guschin A.K., “O razreshimosti zadachi dirikhle s granichnoi funktsiei iz l_{p} dlya ellipticheskogo uravneniya vtorogo poryadka”, Doklady Akademii nauk, 437:5 (2011), 583–586
Gushchin A.K., “Solvability of the Dirichlet Problem for a Second-Order Elliptic Equation with a Boundary Function From l-P”, Dokl. Math., 83:2 (2011), 219–221
V. P. Mikhailov, “Existence of boundary values of polyharmonic functions”, Sb. Math., 201:5 (2010), 735–757
Mikhailov, VP, “On the existence of limit values of a biharmonic function on the boundary of a domain”, Doklady Mathematics, 69:2 (2004), 228
Kapanadze D., “On the Representation of a Harmonic Function by a Simple Layer Potential”, Differ. Equ., 38:2 (2002), 259–262
I. M. Petrushko, “Existence of boundary values for solutions of degenerate elliptic equations”, Sb. Math., 190:7 (1999), 973–1004
A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194
L. A. Muravei, A. V. Filinovskii, “On a problem with nonlocal boundary condition for a parabolic equation”, Math. USSR-Sb., 74:1 (1993), 219–249