Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 1, Pages 1–19
DOI: https://doi.org/10.1070/SM1980v036n01ABEH001751
(Mi sm2193)
 

This article is cited in 35 scientific papers (total in 35 papers)

On boundary values in $L_p$, $p>1$, of solutions of elliptic equations

A. K. Gushchin, V. P. Mikhailov
References:
Abstract: The behavior near the boundary of generalized solutions of a second order elliptic equation
$$ \sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\frac{\partial u}{\partial x_j}\biggr)=f,\qquad x\in Q=\{|x|<1\}\subset\mathbf R_n. $$
in $W_p^1(Q)$, $p>1$, is studied.
It is shown that under a certain condition on the right side of the equation, the boundedness of the function $\|x\|_{L_p(\|x\|=r)}$, $\frac12\leqslant r<1$, is necessary and sufficient for the existence of a limit for the solution $u(rw)$, $\frac12\leqslant r<1$, $|w|=1$, in $L_p(\|w\|=1)$ as $r\to1-0$. Moreover, the summability of the function $(1-|x|)|u(x)|^{p-2}|\nabla u(x)|^2$ is also a necessary and sufficient condition for the existence of a limit in $ L_p$ on the boundary.
Bibliography: 10 titles.
Received: 07.08.1978
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35J67; Secondary 35J25
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19
Citation in format AMSBIB
\Bibitem{GusMik79}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru//eng/sm2193}
\crossref{https://doi.org/10.1070/SM1980v036n01ABEH001751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=524209}
\zmath{https://zbmath.org/?q=an:0453.35035|0434.35032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22400001}
Linking options:
  • https://www.mathnet.ru/eng/sm2193
  • https://doi.org/10.1070/SM1980v036n01ABEH001751
  • https://www.mathnet.ru/eng/sm/v150/i1/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024