Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 1, Pages 1–19
DOI: https://doi.org/10.1070/SM1980v036n01ABEH001751
(Mi sm2193)
 

This article is cited in 35 scientific papers (total in 35 papers)

On boundary values in Lp, p>1, of solutions of elliptic equations

A. K. Gushchin, V. P. Mikhailov
References:
Abstract: The behavior near the boundary of generalized solutions of a second order elliptic equation
ni,j=1xi(aij(x)uxj)=f,xQ={|x|<1}Rn.
in W1p(Q), p>1, is studied.
It is shown that under a certain condition on the right side of the equation, the boundedness of the function xLp(x=r), 12, is necessary and sufficient for the existence of a limit for the solution u(rw), \frac12\leqslant r<1, |w|=1, in L_p(\|w\|=1) as r\to1-0. Moreover, the summability of the function (1-|x|)|u(x)|^{p-2}|\nabla u(x)|^2 is also a necessary and sufficient condition for the existence of a limit in L_p on the boundary.
Bibliography: 10 titles.
Received: 07.08.1978
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35J67; Secondary 35J25
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “On boundary values in L_p, p>1, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19
Citation in format AMSBIB
\Bibitem{GusMik79}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On boundary values in $L_p$, $p>1$, of solutions of elliptic equations
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/sm2193}
\crossref{https://doi.org/10.1070/SM1980v036n01ABEH001751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=524209}
\zmath{https://zbmath.org/?q=an:0453.35035|0434.35032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22400001}
Linking options:
  • https://www.mathnet.ru/eng/sm2193
  • https://doi.org/10.1070/SM1980v036n01ABEH001751
  • https://www.mathnet.ru/eng/sm/v150/i1/p3
  • This publication is cited in the following 35 articles:
    1. T. V. Kapitsyna, “The Space $H_p$ of Solutions of Degenerate Parabolic Equations”, Math Notes, 114:5-6 (2023), 797  crossref
    2. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. A. K. Gushchin, “On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    4. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. Petrushko I.M., Petrushko M.I., “On the First Mixed Problem in l-P, P > 1, For the Degenerating on the Boundary Parabolic Equations of Second Order”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 040006  crossref  isi
    6. Petrushko I.M., “On Boundary and Initial Values of Solutions of a Second-Order Parabolic Equation That Degenerate on the Domain Boundary”, Dokl. Math., 96:3 (2017), 568–570  crossref  mathscinet  zmath  isi
    7. S. I. Bezrodnykh, V. I. Vlasov, “Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition”, Comput. Math. Math. Phys., 54:4 (2014), 631–695  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. V. P. Mikhailov, “O suschestvovanii granichnykh znachenii u reshenii ellipticheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 97–105  mathnet  crossref
    9. A. K. Guschin, “$L_p$-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69  mathnet  crossref
    10. A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. K. Guschin, “Otsenki resheniya zadachi Dirikhle s granichnoi funktsiei iz $L_p$”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 53–67  mathnet  crossref  elib
    13. Guschin A.K., “O razreshimosti zadachi dirikhle s granichnoi funktsiei iz l_{p} dlya ellipticheskogo uravneniya vtorogo poryadka”, Doklady Akademii nauk, 437:5 (2011), 583–586  elib
    14. Gushchin A.K., “Solvability of the Dirichlet Problem for a Second-Order Elliptic Equation with a Boundary Function From l-P”, Dokl. Math., 83:2 (2011), 219–221  crossref  mathscinet  zmath  isi  elib
    15. V. P. Mikhailov, “Existence of boundary values of polyharmonic functions”, Sb. Math., 201:5 (2010), 735–757  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. Mikhailov, VP, “On the existence of limit values of a biharmonic function on the boundary of a domain”, Doklady Mathematics, 69:2 (2004), 228  mathscinet  zmath  isi  elib
    17. Kapanadze D., “On the Representation of a Harmonic Function by a Simple Layer Potential”, Differ. Equ., 38:2 (2002), 259–262  mathnet  crossref  mathscinet  zmath  isi
    18. I. M. Petrushko, “Existence of boundary values for solutions of degenerate elliptic equations”, Sb. Math., 190:7 (1999), 973–1004  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    20. L. A. Muravei, A. V. Filinovskii, “On a problem with nonlocal boundary condition for a parabolic equation”, Math. USSR-Sb., 74:1 (1993), 219–249  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:856
    Russian version PDF:186
    English version PDF:41
    References:92
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025