Abstract:
Estimates are established for a measure of the algebraic independence of the values of the exponential function and certain other functions, and a theorem is proved on the number of algebraically independent quantities among a series of values of the exponential function.
Bibliography: 11 titles.
\Bibitem{Nes85}
\by Yu.~V.~Nesterenko
\paper On a~measure of the algebraic independence of the values of certain functions
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 545--567
\mathnet{http://mi.mathnet.ru/eng/sm2175}
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=820402}
\zmath{https://zbmath.org/?q=an:0608.10034|0603.10033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985G744500016}
Linking options:
https://www.mathnet.ru/eng/sm2175
https://doi.org/10.1070/SM1987v056n02ABEH003051
https://www.mathnet.ru/eng/sm/v170/i4/p545
This publication is cited in the following 17 articles: