Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 56, Issue 2, Pages 529–544
DOI: https://doi.org/10.1070/SM1987v056n02ABEH003050
(Mi sm2174)
 

This article is cited in 6 scientific papers (total in 6 papers)

Sharp error estimates of some two-level methods of solving the three-dimensional heat equation

A. A. Zlotnik, I. D. Turetaev
References:
Abstract: The initial-boundary value problem $\partial u/\partial t-\Delta u=f$ in $Q=\Omega\times(0,T)$, $u|_{\partial\Omega\times(0,T)}=0$, $u|_{t=0}=u_0$, is solved, where $\Omega$ is a three-dimensional rectangular parallelepiped. Two-level methods of second-order approximation are considered: families of projection and finite-difference schemes with a splitting operator as well as Crank–Nicolson schemes. Error estimates in $L_2(Q)$ of order $O(\tau^{1+\alpha}+h^2)$ for all $0\leqslant\alpha\leqslant1$ are derived. It is shown that the inclusion of values $0<\alpha\leqslant1$ yields sharpened estimates when $f$ is discontinuous. Accuracy of the estimates with respect to order – and in the case of Crank–Nicolson schemes their unimprovability – is proved. It is found that for difference schemes with splitting operator when $0<\alpha\leqslant1$, $f$ must have in $Q$ not only order $\alpha$ smoothness with respect to $t$ (as in the case of Crank–Nicolson schemes) but also order $2\alpha$ smoothness (in a certain weak sense) in the space variables. Only one scheme with splitting operator out of each family constitutes an important exception, a scheme equivalent to one proposed by J. Douglas and its projective analogue, and that only for $0<\alpha\leqslant1/2$. The situation described is qualitatively different from those studied previously in the literature.
Bibliography: 17 titles.
Received: 30.06.1983 and 19.11.1984
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1985, Volume 128(170), Number 4(12), Pages 530–544
Bibliographic databases:
UDC: 519.633
MSC: Primary 65M20; Secondary 35K05
Language: English
Original paper language: Russian
Citation: A. A. Zlotnik, I. D. Turetaev, “Sharp error estimates of some two-level methods of solving the three-dimensional heat equation”, Mat. Sb. (N.S.), 128(170):4(12) (1985), 530–544; Math. USSR-Sb., 56:2 (1987), 529–544
Citation in format AMSBIB
\Bibitem{ZloTur85}
\by A.~A.~Zlotnik, I.~D.~Turetaev
\paper Sharp error estimates of some two-level methods of solving the three-dimensional heat equation
\jour Mat. Sb. (N.S.)
\yr 1985
\vol 128(170)
\issue 4(12)
\pages 530--544
\mathnet{http://mi.mathnet.ru/sm2174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=820401}
\zmath{https://zbmath.org/?q=an:0613.65102}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 56
\issue 2
\pages 529--544
\crossref{https://doi.org/10.1070/SM1987v056n02ABEH003050}
Linking options:
  • https://www.mathnet.ru/eng/sm2174
  • https://doi.org/10.1070/SM1987v056n02ABEH003050
  • https://www.mathnet.ru/eng/sm/v170/i4/p530
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:464
    Russian version PDF:134
    English version PDF:10
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024