Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 49, Issue 1, Pages 125–149
DOI: https://doi.org/10.1070/SM1984v049n01ABEH002701
(Mi sm2158)
 

This article is cited in 11 scientific papers (total in 11 papers)

Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV

V. A. Galaktionov, A. A. Samarskii
References:
Abstract: Asymptotic properties of nonnegative solutions of quasilinear parabolic equations
ut=x(k(u)ux);k(u)>0foru>0ut=x(k(u)ux);k(u)>0foru>0
with coefficients k(u)k(u) of rather general form are studied in the paper. The investigation is carried out by constructing approximate self-similar solutions which do not satisfy the original equation but nevertheless correctly describe the asymptotic behavior of solutions of the boundary value or Cauchy problems considered. On the basis of a unified method “transformation laws” are established for well-known self-similar solutions of an equation with a power nonlinearity ut=x(uσux)ut=x(uσux) (the cases σ=0σ=0 and σ>0σ>0 are considered separately) which result from small changes of the coefficient uσk(u)uσk(u) (for example, transformations of the form uσuσln(1+u)uσuσln(1+u), uσuσexp[|lnu|1/2]uσuσexp[|lnu|1/2], etc.).
Figures: 1.
Bibliography: 24 titles.
Received: 20.09.1982
Bibliographic databases:
UDC: 517.956
MSC: 35K05, 35K55, 35B40
Language: English
Original paper language: Russian
Citation: V. A. Galaktionov, A. A. Samarskii, “Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV”, Math. USSR-Sb., 49:1 (1984), 125–149
Citation in format AMSBIB
\Bibitem{GalSam83}
\by V.~A.~Galaktionov, A.~A.~Samarskii
\paper Methods of constructing approximate self-similar solutions of nonlinear heat equations.~IV
\jour Math. USSR-Sb.
\yr 1984
\vol 49
\issue 1
\pages 125--149
\mathnet{http://mi.mathnet.ru/eng/sm2158}
\crossref{https://doi.org/10.1070/SM1984v049n01ABEH002701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=703321}
\zmath{https://zbmath.org/?q=an:0574.35049}
Linking options:
  • https://www.mathnet.ru/eng/sm2158
  • https://doi.org/10.1070/SM1984v049n01ABEH002701
  • https://www.mathnet.ru/eng/sm/v163/i2/p131
    Cycle of papers
    This publication is cited in the following 11 articles:
    1. M. A. Davydova, G. D. Rublev, “ASYMPTOTICALLY STABLE SOLUTIONS WITH BOUNDARY AND INTERNAL LAYERS IN DIRECT AND INVERSE PROBLEMS FOR THE SINGULARLY PERTURBED HEAT EQUATION WITH A NONLINEAR THERMAL DIFFUSION”, Differencialʹnye uravneniâ, 60:4 (2024), 439  crossref
    2. M. A. Davydova, G. D. Rublev, “Asymptotically Stable Solutions with Boundary and Internal Layers in Direct and Inverse Problems for a Singularly Perturbed Heat Equation with Nonlinear Thermal Diffusion”, Diff Equat, 60:4 (2024), 412  crossref
    3. Galaktionov, VA, “Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 133 (2003), 1075  crossref  mathscinet  zmath  isi
    4. V. A. Belavin, S. P. Kapitza, S. P. Kurdyumov, “A mathematical model of global demographic processes with regard to the spatial distribution”, Comput. Math. Math. Phys., 38:6 (1998), 849–865  mathnet  zmath
    5. Bebernes J., Bricher S., Galaktionov V., “Asymptotics of Blowup for Weakly Quasi-Linear Parabolic Problems”, Nonlinear Anal.-Theory Methods Appl., 23:4 (1994), 489–514  crossref  mathscinet  zmath  isi
    6. A. S. Kalashnikov, “Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations”, Russian Math. Surveys, 42:2 (1987), 169–222  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR-Sb., 54:2 (1986), 421–455  mathnet  crossref  mathscinet  zmath
    8. Galaktionov V., Kurdiumov S., Samarskii A., “The Asymptotic Stability of Self-Similar Solutions to the Equation of Heat-Conduction with Nonlinear Sink”, 281, no. 1, 1985, 23–28  mathscinet  isi
    9. V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On approximate self-similar solutions of a class of quasilinear heat equations with a source”, Math. USSR-Sb., 52:1 (1985), 155–180  mathnet  crossref  mathscinet  zmath
    10. Galaktionov V., Kurdyumov S., Samarskii A., “Asymptotic Stability of Invariant Solutions of Nonlinear Heat-Conduction Equation with Sources”, Differ. Equ., 20:4 (1984), 461–476  mathscinet  zmath  isi
    11. Galaktionov V., Kurdiumov S., Samarskii A., “A Method of Stationary States for Nonlinear Evolutional Parabolic Problems”, 278, no. 6, 1984, 1296–1300  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:631
    Russian version PDF:243
    English version PDF:28
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025