Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 4, Pages 483–536
DOI: https://doi.org/10.1070/sm1997v188n04ABEH000215
(Mi sm215)
 

This article is cited in 5 scientific papers (total in 5 papers)

A universal sequence in the classical travel-time inversion problem

M. L. Gervera, E. A. Kudryavtsevab

a International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
b M. V. Lomonosov Moscow State University
References:
Abstract: Inversion of the travel-time curve is a fundamental problem of mathematical geophysics: explosions and earthquakes take place on (or close to) the surface of the Earth, instruments record signals from them, and it is required to find the velocity of elastic waves in the interior of the Earth from the times taken by the signals travelling from the sources to the receivers (the travel-time curve). After the pioneering work at the beginning of the century and the detailed research in the 1960s one would hardly have expected the appearance of fundamentally new results on this problem in its classical formulation, when the wave velocity is assumed to depend only on the depth. However, it has turned out to be premature to regard this formulation as settled. The theorems proved here on a universal sequence and extremal properties of discrete measures will probably surprise specialists in the inverse problem and will interest both experts and amateurs in extremal problems.
Received: 20.08.1996
Russian version:
Matematicheskii Sbornik, 1997, Volume 188, Number 4, Pages 3–56
DOI: https://doi.org/10.4213/sm215
Bibliographic databases:
UDC: 517+550.34
MSC: Primary 86A15, 86A22; Secondary 73D50
Language: English
Original paper language: Russian
Citation: M. L. Gerver, E. A. Kudryavtseva, “A universal sequence in the classical travel-time inversion problem”, Mat. Sb., 188:4 (1997), 3–56; Sb. Math., 188:4 (1997), 483–536
Citation in format AMSBIB
\Bibitem{GerKud97}
\by M.~L.~Gerver, E.~A.~Kudryavtseva
\paper A universal sequence in the~classical travel-time inversion problem
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 4
\pages 3--56
\mathnet{http://mi.mathnet.ru/sm215}
\crossref{https://doi.org/10.4213/sm215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1462028}
\zmath{https://zbmath.org/?q=an:0898.73018}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 4
\pages 483--536
\crossref{https://doi.org/10.1070/sm1997v188n04ABEH000215}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XP47500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031286032}
Linking options:
  • https://www.mathnet.ru/eng/sm215
  • https://doi.org/10.1070/sm1997v188n04ABEH000215
  • https://www.mathnet.ru/eng/sm/v188/i4/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:500
    Russian version PDF:210
    English version PDF:22
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024