Abstract:
The case is considered of a critical fixed point of a diffeomorphism of codimension 2 whose linear part has the eigenvalues ±1. According to ideas developed by Takens and Arnol'd, to deformations of such diffeomorphisms there correspond families of vector fields invariant with respect to an involution of the plane, namely, a reflection relative to a line passing through the fixed point. Bifurcations in two-parameter families in general position are described. Rigorous proofs are given.
Figures: 2.
Bibliography: 11 titles.
\Bibitem{Zho83}
\by Kh.~Zholondek
\paper On the versality of a~family of symmetric vector fields in the plane
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 463--492
\mathnet{http://mi.mathnet.ru/eng/sm2142}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=695955}
\zmath{https://zbmath.org/?q=an:0554.58041|0516.58032}
Linking options:
https://www.mathnet.ru/eng/sm2142
https://doi.org/10.1070/SM1984v048n02ABEH002686
https://www.mathnet.ru/eng/sm/v162/i4/p473
This publication is cited in the following 20 articles:
Spiros Cotsakis, “Bifurcation diagrams for spacetime singularities and black holes”, Eur. Phys. J. C, 84:1 (2024)
V. Sh. Roitenberg, “O nelokalnykh bifurkatsiyakh v dvukhparametricheskikh semeistvakh vektornykh polei na ploskosti s involyutivnoi simmetriei”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2024, no. 1, 51–63
Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 195
Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 295
JIBIN LI, “HILBERT'S 16TH PROBLEM AND BIFURCATIONS OF PLANAR POLYNOMIAL VECTOR FIELDS”, Int. J. Bifurcation Chaos, 13:01 (2003), 47
David C. Diminnie, Richard Haberman, “Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant”, Physica D: Nonlinear Phenomena, 162:1-2 (2002), 34
Ralf W. Wittenberg, Philip Holmes, “The limited effectiveness of normal forms: A critical review and extension of local bifurcation studies of the Brusselator PDE”, Physica D: Nonlinear Phenomena, 100:1-2 (1997), 1
J. Hainzl, “Uniqueness of limit cycles and quotients of abelian integrals”, Nonlinear Analysis: Theory, Methods & Applications, 30:8 (1997), 4789
Josef Hainzl, “On the number of limit cycles in perturbations of a two dimensional nonlinear differential system”, Aeq. Math, 53:1-2 (1997), 254
Kurakin L., Yudovich V., “Bifurcation of the Branching of a Cycle in N-Parameter Family of Dynamic Systems with Cosymmetry”, Chaos, 7:3 (1997), 376–386
E. V. Nikolaev, “Bifurcations of limit cycles of differential equations admitting an involutive symmetry”, Sb. Math., 186:4 (1995), 611–627
J Gheiner, Nonlinearity, 7:1 (1994), 109
André Zegeling, Robert E. Kooij, “Uniqueness of limit cycles in polynomial systems with algebraic invariants”, BAZ, 49:1 (1994), 7
S. A. Gils, Dynamics, Bifurcation and Symmetry, 1994, 333
Freddy Dumortier, Robert Roussarie, Jorge Sotomayor, Henryk Żaładek, Lecture Notes in Mathematics, 1480, Bifurcations of Planar Vector Fields, 1991, 165
S A van Gils, M Krupa, W F Langford, Nonlinearity, 3:3 (1990), 825
Shui-Nee Chow, Chengzhi Li, Duo Wang, “Uniqueness of periodic orbits of some vector fields with codimension two singularities”, Journal of Differential Equations, 77:2 (1989), 231
Jack Carr, Jan A. Sanders, Stephan A. van Gils, “Nonresonant Bifurcations with Symmetry”, SIAM J Math Anal, 18:3 (1987), 579
Stephan A van Gils, “A note on: “Abelian integrals and bifurcation theory””, Journal of Differential Equations, 59:3 (1985), 437