Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 463–492
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002686
(Mi sm2142)
 

This article is cited in 20 scientific papers (total in 20 papers)

On the versality of a family of symmetric vector fields in the plane

Kh. Zholondek
References:
Abstract: The case is considered of a critical fixed point of a diffeomorphism of codimension 2 whose linear part has the eigenvalues ±1. According to ideas developed by Takens and Arnol'd, to deformations of such diffeomorphisms there correspond families of vector fields invariant with respect to an involution of the plane, namely, a reflection relative to a line passing through the fixed point. Bifurcations in two-parameter families in general position are described. Rigorous proofs are given.
Figures: 2.
Bibliography: 11 titles.
Received: 30.03.1981
Bibliographic databases:
UDC: 517.9
MSC: Primary 58F10, 58F14; Secondary 34C05, 34C35, 57R25, 58F21, 58G99
Language: English
Original paper language: Russian
Citation: Kh. Zholondek, “On the versality of a family of symmetric vector fields in the plane”, Math. USSR-Sb., 48:2 (1984), 463–492
Citation in format AMSBIB
\Bibitem{Zho83}
\by Kh.~Zholondek
\paper On the versality of a~family of symmetric vector fields in the plane
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 463--492
\mathnet{http://mi.mathnet.ru/eng/sm2142}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=695955}
\zmath{https://zbmath.org/?q=an:0554.58041|0516.58032}
Linking options:
  • https://www.mathnet.ru/eng/sm2142
  • https://doi.org/10.1070/SM1984v048n02ABEH002686
  • https://www.mathnet.ru/eng/sm/v162/i4/p473
  • This publication is cited in the following 20 articles:
    1. Spiros Cotsakis, “Bifurcation diagrams for spacetime singularities and black holes”, Eur. Phys. J. C, 84:1 (2024)  crossref
    2. V. Sh. Roitenberg, “O nelokalnykh bifurkatsiyakh v dvukhparametricheskikh semeistvakh vektornykh polei na ploskosti s involyutivnoi simmetriei”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2024, no. 1, 51–63  mathnet  crossref
    3. Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 195  crossref
    4. Yuri A. Kuznetsov, Applied Mathematical Sciences, 112, Elements of Applied Bifurcation Theory, 2004, 295  crossref
    5. JIBIN LI, “HILBERT'S 16TH PROBLEM AND BIFURCATIONS OF PLANAR POLYNOMIAL VECTOR FIELDS”, Int. J. Bifurcation Chaos, 13:01 (2003), 47  crossref  mathscinet  zmath
    6. David C. Diminnie, Richard Haberman, “Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant”, Physica D: Nonlinear Phenomena, 162:1-2 (2002), 34  crossref  mathscinet  zmath
    7. Bernd Krauskopf, Christiane Rousseau, Nonlinearity, 10:5 (1997), 1115  crossref  mathscinet  zmath  isi
    8. Ralf W. Wittenberg, Philip Holmes, “The limited effectiveness of normal forms: A critical review and extension of local bifurcation studies of the Brusselator PDE”, Physica D: Nonlinear Phenomena, 100:1-2 (1997), 1  crossref  mathscinet  zmath
    9. J. Hainzl, “Uniqueness of limit cycles and quotients of abelian integrals”, Nonlinear Analysis: Theory, Methods & Applications, 30:8 (1997), 4789  crossref  mathscinet  zmath
    10. Josef Hainzl, “On the number of limit cycles in perturbations of a two dimensional nonlinear differential system”, Aeq. Math, 53:1-2 (1997), 254  crossref  mathscinet  zmath
    11. Kurakin L., Yudovich V., “Bifurcation of the Branching of a Cycle in N-Parameter Family of Dynamic Systems with Cosymmetry”, Chaos, 7:3 (1997), 376–386  crossref  mathscinet  zmath  adsnasa  isi
    12. E. V. Nikolaev, “Bifurcations of limit cycles of differential equations admitting an involutive symmetry”, Sb. Math., 186:4 (1995), 611–627  mathnet  crossref  mathscinet  zmath  isi
    13. J Gheiner, Nonlinearity, 7:1 (1994), 109  crossref  mathscinet  zmath  isi
    14. André Zegeling, Robert E. Kooij, “Uniqueness of limit cycles in polynomial systems with algebraic invariants”, BAZ, 49:1 (1994), 7  crossref  mathscinet  zmath
    15. S. A. Gils, Dynamics, Bifurcation and Symmetry, 1994, 333  crossref
    16. Freddy Dumortier, Robert Roussarie, Jorge Sotomayor, Henryk Żaładek, Lecture Notes in Mathematics, 1480, Bifurcations of Planar Vector Fields, 1991, 165  crossref
    17. S A van Gils, M Krupa, W F Langford, Nonlinearity, 3:3 (1990), 825  crossref  mathscinet  zmath  isi
    18. Shui-Nee Chow, Chengzhi Li, Duo Wang, “Uniqueness of periodic orbits of some vector fields with codimension two singularities”, Journal of Differential Equations, 77:2 (1989), 231  crossref  mathscinet
    19. Jack Carr, Jan A. Sanders, Stephan A. van Gils, “Nonresonant Bifurcations with Symmetry”, SIAM J Math Anal, 18:3 (1987), 579  crossref  mathscinet  zmath  isi
    20. Stephan A van Gils, “A note on: “Abelian integrals and bifurcation theory””, Journal of Differential Equations, 59:3 (1985), 437  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:401
    Russian version PDF:123
    English version PDF:45
    References:65
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025